蔵王山周辺の温泉に関する地球化学的研究

山形大学教育学部化学教室 加藤武雄
（昭和39年3月21日受理）

Geochemical Investigation of the Hot Springs in the Zaō Volcanic Region

Takeo Katō
（Department of Chemistry, Faculty of Education, Yamagata University）

The Zaō volcano group rising in the boundary between Yamagata and Miyagi prefectures, consists of Ryonan, Zaō, Byōbu and Aoso volcanoes. Among them the Zaō volcano has been the most active mountain in geological history. The most recent eruption of this mountain took place in 1939. In the Zaō volcanic region several hot springs are found. In 1963, the author examined the thermal waters of these hot springs. The results are as follows:

I. The thermal waters in this region are classified in three types:
 \[\text{SO}_4^{2-} \text{ type: Zaō, Kamoshika, Gaga, Tōgatta, Yamagata (Narisawa), Sakunami.} \]
 \[\text{HCO}_3^- \text{ type: Aone.} \]
 \[\text{Cl}^- \text{ type: Kamasuki, Akiu, Kaminoyama.} \]

II. The relation of Na\(^+\) > Ca\(^{2+}\) > Mg\(^{2+}\) exists in almost all spring waters.

III. The hot springs near the active centre of the Zaō volcano are of acidic SO\(_4^{2-}\) type, while the thermal waters change gradually from SO\(_4^{2-}\) type to Cl\(^-\) type as the springs are situated far from active centre.

IV. As for Kamoshika hot spring, it is supposed that hot acid water gushing there is formed by mixing of groundwater and volcanic gas under the ground. In the case of Zaō hot spring, volcanic gases of magmatic origin probably contribute mineral matters to the thermal water by reaction with wall rocks.

1. 緒 言

ここにいう蔵王山とは蔵王火山群をさし、竜山・蔵王・屏風・青根の4火山より構成されている。また竜山・蔵王の両火山は北蔵王、屏風・青根の両火山は南蔵王と呼ばれれこれらの周辺には多くの温泉が湧出する。すなわちこの両蔵王地区にまたがって蔵王、竜山、青根、遠刈田、鎌先の諸温泉が分布し、さらにその近隣にも上山、山形（成沢）、作並、秋保、などの温泉が見出される。

これらのうち遠刈田、作並、秋保、秋保の諸温泉についてははさきに有井らによって簡単な地球化学的研究がなされましたが詳細な化学分析はなされなかった。その後三角は蔵王温泉群の蛇ケ原湧水について微量成分をも含めて詳細な化学分析を行ない、さらに筆者らは酢川水系水源一帯の温泉全般にわたって地球化学的研究を実施した。山形・宮城両県の衛生研究所もこれらの温泉について広く化学分析を行なっているがまだその成績は公刊されていない。このような状況から筆者は1963年蔵王山周辺のこれらの温泉全体について地球化学的調査を行ない、まとまった知見を得ようと試みた。ここにはその際得られた結果を報告する。
2. 滅出状況

蔵王山周辺の温泉分布図

第1図

蔵王山周辺の温泉分布図

2.1 蔵王火山地域の温泉群：蔵王温泉群は廃山火山の高湯爆裂火口内に分布し、廃川本流、一湖川、二湖川および三湖川の源流地域に自然湧出する。源泉の総数は約50である。いわゆる蔵王温泉とは廃川本流の源をなす諸源泉の総称で23源泉から成る。一湖川、二湖川、三湖川水源地域に湧出するものでは二湖川のII M1号泉以外は浴用に供せられず、湯花採取に利用される。

かもしれない温泉は廃火山火山の廃の高湯爆裂火口内に盛り上る五色岳（中央火口丘）北東部に位置し地獄沢の斜面に見出される。ここには1940年より噴気孔が出現した。現在数個所に噴気孔が開口し噴気の最高温度は171℃を示す。かもしれない温泉は後述するように地下の湖沼で噴気の地下水が混入して生じたものと考えられる。

2.2 蔵王山麓地域の温泉群：蔵王温泉は廃川上流の廃川湖周に自然湧出する。つぎに青根、遠刈田の網に廃川中流部にかけて温泉が分布する。遠刈田温泉には石英粗面岩に掘さくした4源泉が現在利用されている。いずれも動力揚湯に依存する。掘さく深度は共通して300m程度である。掘さくは青根火山の西南部に位置し4源泉がある。それらには自然湧出のものと動力揚湯によるものがあり、筆者の調査した最上層源泉は深度35mの自噴泉である。

2.3 蔵王周辺地域の温泉群：上山温泉は直接石英粗面岩中に19〜68m掘さくした2源泉と第三紀層中に180〜270m掘進した3源泉とがあり、それぞれ動力揚湯を行なっている。山形（成沢）温泉は廃火山の噴出物で被われた第三紀層中に320m掘さくした源泉か
ら動力揚湯している。作並温泉は広瀬川上流に位し緑色層灰岩地域に湧出し、秋保温泉は名取川流域の第三系前期層中に湧出する。

3. 実験方法
化学分析のための試水は各源泉から直接採取した。ただ青根温泉だけは浴槽注入口より採水した。温泉水分析の方法は多くは厚生省（19）の“元泉分析法指針”にしたがったが、つぎにその大要を記す。まず pH はガラス電極を用いて測定し、Cl⁻ は Mohr 法、Br⁻ および I⁻ は太秦ら（14）の法、SO₄²⁻ は重量法、SiO₂ は重量法、B は多価アルカリ法によった。また Na⁺, K⁺ 両イオンは炎光法、Ca²⁺, Mg²⁺ 両イオンは EDTA 法、Fe⁺⁺ は o-フェナントロリンによる比色法、Mn⁺⁺ は KIO₄ 使用の比色法、Al⁺⁺ はアルミノンによる比色法を採用した。なお蕨王温泉群の Ca⁺⁺, Mg⁺⁺ の分析に当たってはトリエタノールアミンをいんべい剤に用いて EDTA 法を適用した（14）。

4. 実験結果および考察
各温泉の主要源泉について化学分析を行なった結果は第 1 表のとおりである。表中、山形、上山両温泉については 1959 年の分析結果（15），作並温泉については宮城県衛生研究所の資料を
第1表 蔵王山周辺の

<table>
<thead>
<tr>
<th>No.</th>
<th>温泉名</th>
<th>採水月日</th>
<th>気温(℃)</th>
<th>気温(℃)</th>
<th>pH</th>
<th>全塩素残存量 (mg/l)</th>
<th>K⁺ (mg/l)</th>
<th>Na⁺ (mg/l)</th>
<th>Ca²⁺ (mg/l)</th>
<th>Mg²⁺ (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>山形</td>
<td>1959 VIII 29</td>
<td>32.6</td>
<td>42.7</td>
<td>7.8</td>
<td>2670</td>
<td>19.4</td>
<td>805</td>
<td>55.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>上山</td>
<td>1961 VII 16</td>
<td>24.7</td>
<td>64.8</td>
<td>7.7</td>
<td>2693</td>
<td>22.3</td>
<td>474</td>
<td>315.3</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>蔵王</td>
<td>1963 VIII 12</td>
<td>28.3</td>
<td>41.8</td>
<td>1.69</td>
<td>3995</td>
<td>17.2</td>
<td>61.3</td>
<td>80.5</td>
<td>37.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>蔵根</td>
<td>1955 VIII 5</td>
<td>21.4</td>
<td>58.5</td>
<td>6.87</td>
<td>810</td>
<td>8.8</td>
<td>160</td>
<td>62.8</td>
<td>6.1</td>
</tr>
<tr>
<td>11</td>
<td>遠刈田</td>
<td>1955 VII 5</td>
<td>24.0</td>
<td>55.5</td>
<td>6.37</td>
<td>1866</td>
<td>21.2</td>
<td>400</td>
<td>99.6</td>
<td>26.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>鍋先</td>
<td>1955 VIII 5</td>
<td>27.5</td>
<td>42.1</td>
<td>6.66</td>
<td>2979</td>
<td>25.0</td>
<td>925</td>
<td>122.4</td>
<td>16.5</td>
</tr>
<tr>
<td>14</td>
<td>秋保</td>
<td>1961 VII 1</td>
<td>26.5</td>
<td>58.0</td>
<td>7.17</td>
<td>2923</td>
<td>68.4</td>
<td>1200</td>
<td>518.8</td>
<td>21.8</td>
</tr>
<tr>
<td>15</td>
<td>作並</td>
<td>1957 XII 19</td>
<td>43.0</td>
<td>7.7</td>
<td>930</td>
<td>17.0</td>
<td>185</td>
<td>108.0</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

用いた。

はじめに各温泉の湧出が容易に比較されるように、おもなアミオン、カチオンの当量百分率を計算して key diagram (第2図) に表わしておく。ここにアミオンとしては SO₄⁻, Cl⁻, HCO₃⁻, カチオンとしては K⁺, Na⁺, Ca²⁺, Mg²⁺ を代表に選んだ。これから気候をつくることは、蔵王温泉群と蔵王山周辺地域の温泉群がそれぞれ図上に特有な領域を占めてまとまることである。＃もしか温泉は各路線においてつねに蔵王温泉群に接近して位置するが、しかし多少行動を異にする。蔵王周辺地域の温泉群になるとこの群全体としてのまとまりは見られない。さらにアミオンに着目して当量濃度の大小からこの地域の温泉を検討してみると、これらはつきのような型に分類される。

酸性泉：蔵王, かもしか

- SO₄⁻ 型
- Cl⁻ > HCO₃⁻: 山形, 作並
- HCO₃⁻ > Cl⁻: 鍋々, 遠刈田

HCO₃⁻ 型: SO₄⁻ > Cl⁻: 蔵根

Cl⁻ 型: SO₄⁻ > HCO₃⁻: 鍋先, 上山
- HCO₃⁻ > SO₄⁻: 秋保

全体を通じて大半が SO₄⁻ 型温泉で HCO₃⁻ 型は蔵根温泉だけである。また火山活動の中 心地域では SO₄⁻ 型の酸性泉が顕出するが、そこを遠ざかるにつれて中性の SO₄⁻ 型に移行し、さらに Cl⁻ 型へと泉質が推移することがわかる。つきに各温泉群についてそれぞれの特 徴を検討したと思う。
第129表 月岡源泉

<table>
<thead>
<tr>
<th>温泉名</th>
<th>Cl⁻ (meq/l)</th>
<th>SO₄²⁻ (meq/l)</th>
<th>H⁺ (meq/l)</th>
<th>Na⁺ + K⁺ (meq/l)</th>
<th>Ca²⁺ + Mg²⁺ (meq/l)</th>
<th>Fe²⁺ + Al³⁺ (meq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>月岡源泉</td>
<td>15.6</td>
<td>70.4</td>
<td>30.7</td>
<td>3.09</td>
<td>7.07</td>
<td>14.3</td>
</tr>
<tr>
<td>近江屋</td>
<td>14.0</td>
<td>64.7</td>
<td>23.5</td>
<td>2.94</td>
<td>5.93</td>
<td>22.5</td>
</tr>
<tr>
<td>一慶川</td>
<td>12.5</td>
<td>44.6</td>
<td>14.0</td>
<td>4.24</td>
<td>7.01</td>
<td>17.7</td>
</tr>
<tr>
<td>二慶川</td>
<td>15.7</td>
<td>44.0</td>
<td>15.2</td>
<td>5.97</td>
<td>11.1</td>
<td>12.0</td>
</tr>
<tr>
<td>三慶川</td>
<td>11.0</td>
<td>37.4</td>
<td>10.0</td>
<td>4.13</td>
<td>7.33</td>
<td>16.8</td>
</tr>
<tr>
<td>かもしな</td>
<td>0.20</td>
<td>3.4</td>
<td>0.04</td>
<td>0.23</td>
<td>2.44</td>
<td>0.70</td>
</tr>
</tbody>
</table>

4.1 蔵王火山地域の温泉群： 蔵王温泉群は深遠な温泉がこの群に含まれる。pHは前者が1.69～1.87、後者は3.78でともにSO₄²⁻型の酸性泉である。両者とも広い意味で藏王火山の活動と密接な関係を有することはたしかであるが、泉質は異なる。まず全蒸発残留物は藏王温泉群では2,584～3,995 mg/lであるのに対し、かもしか温泉では439 mg/lにすぎない。さらに泉質の特徴を明らかにするために主イオンの当量濃度を第2表に示す。藏王温泉群ではAl³⁺がカナシオンの主体をなしH⁺+(Ca²⁺+Mg²⁺)+(Fe²⁺+Al³⁺)≒SO₄²⁻が成立する。このようにしてこの群の酸性原因はH₂SO₄で、主成分はAl₂(SO₄)₃であることが知られる。一方かもしか温泉ではこれと趣を異にし、カナシオンの主体はCa²⁺、Mg²⁺でAl³⁺がこれにつながり(Ca²⁺+Mg²⁺)+Al³⁺≒SO₄²⁻の関係が見られる。すなわちこの温泉はCaSO₄を溶存成分の主体をなし、その弱酸性はH₂SO₄によるものと考えられる。この温泉では多くにCl⁻濃度の低いことが目立つ。イオン交換物に関しては先に筆者らが蔵王温泉群について報告して
いるので、この度の調査では桜王近江屋山沼（No. 3）とかもしか温泉に限って S²⁻ のみの定量を行なった。それぞれ H₂S として 19.4 mg/l, 53.4 mg/l 検出された。また桜王温泉群の泉温が 40~50°C の範囲のものが多いに対し、かもしか温泉は 89.0°C の高温を示す。以上の事実に加えて、筆者の先の報告および岩崎らの研究を参照すると、これらの温泉の成因はつぎのように推定される。

まず桜王温泉群では H₂S, SO₄²⁻, HCl などを主体とする火山性発散物が蒸気状態で地下よりはげしく上昇し、通路付近の岩石を溶解しながら湯出孔に到達するものと推論されよう。これは筆者が以前に公にした高知火山の高湯温泉の湯出機構に類似する(1)。これに対してもかもしか温泉の成因は水蒸気、H₂S などを主とする蒸気状態下で地下深所で地下水が混入したものと考えられる。この温泉に接近して現在活動中の噴気孔があり、この噴気が高温（171°F）で水蒸気、H₂S を主成分とすることや、この温泉の全蒸発残留物が 0.5 g/l に達せず、泉温がこの地熱発生圧に応じて 89.0°C で溶存 H₂S 含有量が大きいことなどは十分この成因を裏付けるものといえよう。

4.2 桜王山麓地域の温泉群： 嫒々、青根、遠刈田、鍌先の諸温泉がこれに属し中性またはアルカリ性で泉温は 40~60°C の範囲内にある。桜王火山の活動の中心からは以上並べた順に遠ざかれる。Key diagram では各要素を表してこの 4 泉水系一連続においてまとめる。カチオンの含有量については第 3 表に見られるようにいずれも Na⁺ > Ca²⁺ > Mg²⁺ の順序を示す。アニオンに着目すると、遠刈田は SO₄²⁻ 型、青根は HCO₃⁻ 型、鍌先は Cl⁻ 型の温泉であることがわかる。溶存成分のうち Cl⁻ は上述の温泉の順に規則正しく酸度を増加し、HCO₃⁻ /Cl⁻ および Na⁺/Cl⁻ の二つの比はこれらとは逆に上記の順序にしたがいに値を減少する。このように温泉の分布状態から泉質の変化を考察した時に青根温泉だけがよく一定の傾向から外れる。その例としてこの温泉を除いて全蒸発残余物、HBO₃⁻ 含有量、Ca²⁺/SO₄²⁻ などを考えまってみると、いずれの値についても펫々、遠刈田、鍌先の順に減少する。これまで考えたことから一般的にいえば、この群の温泉は火山活動の中心部から遠ざかるにつれてその硫化作用の影響が減滅して、むしろ自然の包蔽下などの寄与が大きく効いてくるのではないかと思われる。

つきに各温泉の化学組成について検討を試みよう。ペット々、青根、遠刈田の 3 泉水を見ると、共通して主要成分の酸度順に SO₄²⁻ + HCO₃⁻ ≈ Na⁺ + Ca²⁺ なる関係が成り立つ。これに含有量の大小を考えに入れるとペット々、遠刈田阿泉の溶存成分の主体は Na₂SO₄、青根温泉の主成分は NaHCO₃ であることがわかる。鍌先温泉の場合には Cl⁻ + SO₄²⁻ + HCO₃⁻ ≈ Na⁺ が成立し次に NaCl を主成分、Na₂SO₄ を第成分とすることを知る。

4.3 桜王周縁地域の温泉群： 宮城県側の秋保、作並両温泉と山形県側の山形、上山両温泉とがこの群に属する。これらの 4 者はすでに見かけように key diagram 中において全体として

<table>
<thead>
<tr>
<th>温泉名</th>
<th>Cl⁻（meq/l）</th>
<th>SO₄²⁻（meq/l）</th>
<th>HCO₃⁻（meq/l）</th>
<th>Na⁺（meq/l）</th>
<th>Ca²⁺（meq/l）</th>
<th>Mg²⁺（meq/l）</th>
<th>HCO₃⁻/Cl⁻</th>
<th>Na⁺/Cl⁻</th>
<th>Cl⁻/SO₄²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. 銭々</td>
<td>0.79</td>
<td>5.38</td>
<td>4.83</td>
<td>6.95</td>
<td>3.14</td>
<td>0.50</td>
<td>4.12</td>
<td>8.79</td>
<td>0.147</td>
</tr>
<tr>
<td>10. 青根</td>
<td>1.31</td>
<td>2.60</td>
<td>4.49</td>
<td>6.09</td>
<td>1.03</td>
<td>0.90</td>
<td>3.43</td>
<td>4.65</td>
<td>0.504</td>
</tr>
<tr>
<td>11. 遠刈田</td>
<td>5.66</td>
<td>15.2</td>
<td>8.54</td>
<td>17.4</td>
<td>8.98</td>
<td>2.06</td>
<td>1.51</td>
<td>3.07</td>
<td>0.372</td>
</tr>
<tr>
<td>12.</td>
<td>6.24</td>
<td>17.4</td>
<td>13.6</td>
<td>19.6</td>
<td>10.3</td>
<td>6.38</td>
<td>2.18</td>
<td>3.14</td>
<td>0.358</td>
</tr>
<tr>
<td>13. 鍌先</td>
<td>19.3</td>
<td>16.2</td>
<td>13.0</td>
<td>40.3</td>
<td>6.1</td>
<td>1.4</td>
<td>0.67</td>
<td>2.09</td>
<td>1.19</td>
</tr>
</tbody>
</table>
のまとめを示さない。したがって、ここでは個別的に簡単な記述をなすにとどめたい。まず主要溶存成分の含有量を 1 l 当たりのミリ当量に計算し、次に表示する。第 4 表によればいずれも Na⁺ ＞ Ca²⁺ ＞ Mg²⁺ の関係を保ち、山形、作並は SO₄²⁻ 型、上山、秋保は Cl⁻ 型の温泉であることがわかる。さらに、これらと同様に山形、作並温泉では SO₄²⁻ ＝ Na⁺ が成り立ち Na₂SO₄ が溶存成分の大半を占める。上山温泉においては Cl⁻ ＝ Na⁺、SO₄²⁻ ＝ Ca²⁺、Cl⁻ ＞ SO₄²⁻ の関係が見られ NaCl、CaSO₄ を主成分とすることが知られる。秋保温泉ではこれらと同様に Cl⁻ ＋ HCO₃⁻ ≡ Na⁺ ＋ Ca²⁺ が成り立ち、NaCl、Ca(HCO₃)₂ をもとめる溶存成分とすることが知られる。このように、これらの各温泉はそれぞれ成因を異なるものと考えられ、全体としてはまとめた関係を示さない。

5. 結言

蔵王山周辺の温泉を地球化学的に研究してつぎのような結論が得られた。
(1) ア＝オン成分の当量濃度からこの地域の温泉はつぎの型に分類される。
 SO₄²⁻ 型： 蔵王、弗もー、畑、遠刈田、山形、作並。
 HCO₃⁻ 型： 青根。
 Cl⁻ 型： 鎌先、秋保、上山。
(2) おもなカチオンの当量濃度については、ほとんど全部の温泉に Na⁺ ＞ Ca²⁺ ＞ Mg²⁺ の関係が成り立つ。
(3) 一般に蔵王火山の活動の中心近くの温泉は酸性の SO₄²⁻ 型であるが、そこから離れるにしたがって中性・アルカリ性の SO₄²⁻ 型、さらに Cl⁻ 型へと変質が移行する。
(4) 蔵王温泉は火山性発散物が熱水状態で地下より上昇したもので、かもしか温泉は熱気に地下深所で地下水が混入したものと推定される。

この研究を行なうにあたり当教室の小鳥洋子講が関係調査および実験に協力した。また山形市企画室は調査上多くの便宜を与えられた。さらに宮城県衛生研究所は作並温泉の分析値を提供された。以上多くの方に深謝する次第である。

文献

2) 有井： 東北地方温泉の地球化学的研究 I. 蔵王田温泉について、日化、67, 114~115 (1946).
3) 有井・永沢： 同II. 作並温泉群について、日化、68, 12~14 (1947).
4) 有井・永沢・樋口： 同IV. 青根温泉群、鎌倉沢温泉、足立鉱泉について、日化、69, 127~129 (1948).
5) 永沢・有井： 青木 XI. 秋保温泉群について（その 1）, 日化, 70, 216～217 (1949).
6) 永沢・有井： 青木 XII. 秋保温泉群について（その 2）, 日化, 70, 218～220 (1949).
7) 三角： 山形県蔵王高湯温泉蛇ヶ原湧水の化学的研究，山形大紀要（自然科学）2, 207～213 (1953).
9) 山形県衛生部： “山形県の温泉 総論編（改訂版）” (1962), 山形県.
10) 厚生省： “衛生検査指針（鉱泉分析法指針）” (1957), 協同医書出版, 東京.
11) 大久・西村・那須： 天然水中の臭素, ヨウ素の定量法, 分析化学, 8, 231～234 (1959).
12) 土屋： EDTA 滴定併用によるケイ酸塩の迅速分析, 分析化学, 11, 517～523 (1960).
13) 加藤： 須川水系地下水の地球化学的性格, “最上川本系宮川・須川水系地下水調査報告書” 第 2 部, 18～37 (1960), 経済企画庁, 山形県.
15) 加藤： 吾妻火山周辺の温泉に関する地球化学的研究，温泉科学，13, 84～92 (1963).