伊豆、箱根地方の温泉水のストロンチウム含量

東京都立大学理学部化学教室
野 口 喜 三 雄
荒 木 匡
野 村 織 一

(昭和43年10月15日受理)

Strontium Content of the Hot Springs in Izu and Hakone Districts

Kimio Noguchi, Tadashi ARAKI and Ryoichi NOMURA

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University

60 samples of water and 9 samples of calcium carbonate deposits were collected from the hot springs in Izu and Hakone districts from December 11, 1963 to May 27, 1964. Strontium in water sample was deposited as carbonate, after iron and aluminum were excluded as hydroxide from the solution with ammonia. Then, the carbonate deposits were dissolved in hydrochloric acid. The strontium content of the solution was determined by the flame photometric method. The results are as follows:

1) The strontium content of the hot springs in Izu and Hakone districts were 0.012-18.0 mg/l.

2) The mean value of Sr/Ca ratio of the hot spring waters in these districts was 0.44×10^{-2} and almost equal to the mean value of Sr/Ca ratio of igneous rocks.

3) Strontium content of aragonite deposits increased in proportion to that of the water from which aragonites were precipitated.

1. 緒 言

伊豆、箱根地方は、我国でも有数の温泉地帯であり、そこより出る温泉水の泉質も酸性、中性、弱塩基性に至るまで多岐にわたっている。この地方は地質学的には、新第三紀ならびに第四紀に属する火山が分布し、これらの火山活動の残余活動として、多数の温泉が見られる。

当地方の温泉についての研究は、以前から多くの人々によってなされて来たが、ストロンチウム含量に関しては、黒田1)の箱根湯の花沢温泉の分析、浅利2)による関、熱川温泉の石灰華の分析などの報告があるが、伊豆、箱根地方全体の温泉についての研究はされていないようである。そこで著者らはこの地方の温泉水及び石灰華中に含まれるストロンチウムの分析を行ない、ストロンチウムの地球化学的行動を明らかにすることを試みた。

2. 試 料

温泉水の試料は、伊豆、箱根地方の60個所について温泉水をそれぞれ1〜2lのポリエチレン瓶に採取した。泉温及びpHは現地において測定した。また湧出孔に石灰華が析出する数個の源泉については、水と共に石灰華も採取し、ストロンチウムの分析を行なった。調査した温泉の位置は図1に示す通りである。
3. 分析方法

ストロナチウムの分析法については、太秦らの方法に従って行なった。すなわち温泉水については、カルシウムが20～25 mgとなるように蒸水をとり、塩酸酸性下で蒸発乾固した後、更に稀塩酸を加え、この時残存する不溶性のケイ酸をろ別した。ろ液をアンモニア水で中和し、鉄及びアルミニウムを水酸化物として沈殿させして、これをろ別した。このろ液に炭酸アンモニウムを加えて、ストロナチウムを炭酸カルシウムと共沈させて、ろ別した。この沈殿を1N-塩酸7.5 mlに溶解した後、2.5 mlのエチルアルコールと共に25 mlのメスフラスコに移し、水を標線まで加えた。これを分析試料とし、日立製作所製ベックマン分光光度計を用いて、炎光分光分析を行なった。波長は461 μmを使用し、スリット幅は0.15 mmとした。なおこの光の輝度から470 μmにおけるバックグラウンドの輝度を差引いた、あらかじめストロナチウム既知濃度の溶液を用いて作成した検量曲線から、ストロナチウム濃度を求めた。また石灰華については、まずこれを希塩酸に溶解した後、温泉水において同様の操作でストロナチウムを分析した。ストロナチウムの分析誤差は±5%以内である。またカルシウムの分析はEDTAを用いたキレート滴定で行なった。
<table>
<thead>
<tr>
<th>No.</th>
<th>温泉名</th>
<th>採水年月</th>
<th>Tw °C</th>
<th>pH</th>
<th>Ca mg/l</th>
<th>Sr mg/l</th>
<th>Sr/Ca×10²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>錦根湯本温泉</td>
<td>湯南土地</td>
<td>1963.12.11</td>
<td>67.5</td>
<td>8.1</td>
<td>25.5</td>
<td>0.047</td>
</tr>
<tr>
<td>2</td>
<td>塔の沢温泉</td>
<td>よきや</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>底倉温泉</td>
<td>貧民の家</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>木賀温泉</td>
<td>あさぎり</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>朝日生命寮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>湯の花沢温泉</td>
<td>喜現の湯</td>
<td>1963.12.12</td>
<td>25.2</td>
<td>2.7</td>
<td>34.4</td>
<td>0.11</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>弘法の湯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>芦の湯</td>
<td>松坂屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>姉子温泉</td>
<td>秀明館</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>湯河原温泉</td>
<td>遠州屋</td>
<td>1963.12.14</td>
<td>52.0</td>
<td>8.1</td>
<td>49.5</td>
<td>0.18</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>不動の湯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>青壌莊</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>泉温泉</td>
<td>清光園 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>" II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>伊豆山温泉</td>
<td>岸谷浴場</td>
<td>1963.12.13</td>
<td>57.5</td>
<td>4.8</td>
<td>226.6</td>
<td>0.40</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>走湯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>熱海温泉</td>
<td>青山</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>青沼</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>西湯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>小嵐</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>南熱海温泉</td>
<td>3号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>4号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>伊東温泉</td>
<td>湯川, 鈴木館</td>
<td>1964.1.23</td>
<td>42.0</td>
<td>8.2</td>
<td>1251</td>
<td>3.81</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>松原, 山崎屋</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>大川温泉</td>
<td>共同湯</td>
<td>1964.1.22</td>
<td>55.5</td>
<td>8.0</td>
<td>147.6</td>
<td>0.98</td>
</tr>
<tr>
<td>26</td>
<td>北川温泉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>熱川温泉</td>
<td>つちや</td>
<td>1964.1.23</td>
<td>78.8</td>
<td>8.2</td>
<td>87.5</td>
<td>0.93</td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td>岩崎商店</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>"</td>
<td>プリンスホテル</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>片瀬温泉</td>
<td></td>
<td>1964.1.22</td>
<td>70.0</td>
<td>8.4</td>
<td>115.3</td>
<td>1.36</td>
</tr>
<tr>
<td>31</td>
<td>白田温泉</td>
<td></td>
<td></td>
<td>96.0</td>
<td>8.4</td>
<td>131.9</td>
<td>1.10</td>
</tr>
<tr>
<td>32</td>
<td>錦木温泉</td>
<td>帝産閣</td>
<td></td>
<td>73.0</td>
<td>8.3</td>
<td>233.2</td>
<td>1.58</td>
</tr>
<tr>
<td>33</td>
<td>下賀茂温泉</td>
<td>休石湯</td>
<td>1964.1.21</td>
<td>84.0</td>
<td>7.7</td>
<td>1331</td>
<td>9.13</td>
</tr>
<tr>
<td>34</td>
<td>"</td>
<td>銀の湯</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>峯温泉</td>
<td>1号</td>
<td>1964.1.22</td>
<td>97.5</td>
<td>8.3</td>
<td>80.8</td>
<td>0.67</td>
</tr>
<tr>
<td>36</td>
<td>"</td>
<td>2号</td>
<td></td>
<td>82.0</td>
<td>8.6</td>
<td>84.6</td>
<td>0.61</td>
</tr>
<tr>
<td>37</td>
<td>谷津温泉</td>
<td>製塩所</td>
<td></td>
<td>99.2</td>
<td>8.2</td>
<td>45.4</td>
<td>0.30</td>
</tr>
<tr>
<td>38</td>
<td>"</td>
<td>石田屋</td>
<td></td>
<td>97.0</td>
<td>8.4</td>
<td>45.7</td>
<td>0.28</td>
</tr>
<tr>
<td>39</td>
<td>蓮台寺温泉</td>
<td>鉱山の湯</td>
<td>1964.1.21</td>
<td>56.6</td>
<td>7.3</td>
<td>123.1</td>
<td>0.47</td>
</tr>
<tr>
<td>40</td>
<td>"</td>
<td>上の湯</td>
<td></td>
<td>45.4</td>
<td>7.4</td>
<td>65.1</td>
<td>0.25</td>
</tr>
<tr>
<td>41</td>
<td>"</td>
<td>藤原の湯</td>
<td></td>
<td>50.9</td>
<td>7.4</td>
<td>77.4</td>
<td>0.31</td>
</tr>
</tbody>
</table>

（次頁へつづく）
4. 結果および考察

4.1 温泉中のストロンチウム含量

分析結果を表 1 に掲げる。伊豆、箱根地方の温泉は多くは、中性または弱塩基性で、酸性泉は箱根湯の花沢、姫子、伊豆山の走湯等である。伊豆、箱根地方における温泉の温度は図 1、ストロンチウム量の分布は図 2 に示す通りである。60 個の温泉中、46 個の温泉がストロンチウム含量 1mg/l 以下であった。東海岸の温泉は概してストロンチウムに富み、特に下賀茂温泉の休石湯 9.16mg/l、銀の湯 18.0mg/l、南勢海 3 号泉 11.8mg/l 等は最も大い値であるが、これらストロンチウム濃度の高い温泉は概して著しく塩化物に富み、食塩泉であることが注目に値する。太政がの北海道地方の温泉水についても同様の傾向がみられた。また箱根地方の温泉、ならびに伊豆半島中央部の釜山、古奈、長岡、大仁、修善寺、上船原等の温泉水は何れもストロンチウム含量が小さい。後述するように、ストロンチウムとカルシウムとの関には、正の相関が認められたが、ストロンチウムと、ナトリウム、カリウム、マグネシウム、塩素、硫酸根、pH、泉温との間には、関係は認められなかった。

4.2 温泉水におけるストロンチウムとカルシウムとの関係

カルシウムはストロンチウムと共にアルカリ土類金属に属し、性質がよく類似するから、この両者の間には当然何らかの関係が存在することが予想される。伊豆、箱根地方の温泉について、ストロンチウムとカルシウムとの間の関係を図 3 に示した。両者の間には明らかに正の
図 2. 伊豆，箱根地方における温泉のストロンチウム含量の分布

図 3. 伊豆，箱根地方の温泉のストロンチウムとカルシウムとの関係

図 4. 溫泉水の Sr/Ca 比の頻度分布
相関が認められる。

温泉水中の Sr/Ca 比のヒストグラム分布を図 4 に示した。Sr/Ca 比が 0.2×10^{-2} ～ 0.6×10^{-2} の間にある温泉の数が全体の 2/3 を占めている。太秦らによると、酸性泉における Sr/Ca 比は中性泉、アルカリ性泉の Sr/Ca 比に比較して小さいことが報告されている。伊豆、箱根地方の酸性泉については、箱根温泉の花沢、0.33×10^{-2} 及び 0.25×10^{-2}、湧泉、0.15×10^{-2}、伊豆山温泉、0.30×10^{-2} 等で概して小さい。

伊豆、箱根地方の温泉水の平均 Sr/Ca 比を、火成岩の平均 Sr/Ca 比と比較すると、表 2 に示す通りほぼ一致する。このことから、当地地方の温泉水中のストロンチウム及びカルシウムは、恐らく沸騰に接触した火成岩から溶出したものであろうと想像される。

表 2 火成岩、温泉水の Sr/Ca 比

<table>
<thead>
<tr>
<th></th>
<th>Ca ppm</th>
<th>Sr ppm</th>
<th>平均 (Sr/Ca)×10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>火成岩</td>
<td>36,300</td>
<td>150</td>
<td>0.41</td>
</tr>
<tr>
<td>温泉（伊豆、箱根）</td>
<td>7.1～2514</td>
<td>0.012～18.0</td>
<td>0.44</td>
</tr>
</tbody>
</table>

4.3 石灰華中のストロンチウム

地下深部から上昇した高温の温泉水が地表附近に達すると、圧力の低下により沸騰がおこり、水中の炭酸が逸失する。成は湯河原温泉の如く、圧抑空気で揚湯する場合には、水中の炭酸ガスが逸失する。このような場合、水中に溶存している重炭酸カルシウムが分解して、いわゆる石灰華が沈積することになる。石灰華の析出する温泉は日本には多数存在する。石灰華の生成機構とその共沈元素については、北野らによって詳細に研究されている。伊豆、箱根地方の温泉については、数個所の温泉に石灰華の析出が見られた。これらの温泉はすべて高温で、何れも沸騰であるが、pH は 8.2～8.6 を示した。

天然に産する炭酸カルシウムは、結晶系によって、方解石（六方晶系）、アラレ石（斜方晶系）及びバテライト（無定形）にわけられている。このうち、バテライトは比較的不安定であり、前二者が多い。アラレ石は比較的高温で生成することが知られている。著者らが採集した試料

表 3 石灰華のストロンチウム含量

<table>
<thead>
<tr>
<th></th>
<th>結晶</th>
<th>Sr ％</th>
<th>Ca ％</th>
<th>(Sr/Ca) 火成岩</th>
<th>(Sr/Ca) 温泉水</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰温泉石灰華 (1)</td>
<td>方解石</td>
<td>0.042</td>
<td>39.1</td>
<td>0.11×10^{-2}</td>
<td>0.83×10^{-2}</td>
</tr>
<tr>
<td>" (2)</td>
<td>アラレ石</td>
<td>0.24</td>
<td>39.1</td>
<td>0.61×10^{-2}</td>
<td>0.72×10^{-2}</td>
</tr>
<tr>
<td>谷津温泉製塩所石灰華 "</td>
<td>0.13</td>
<td>39.3</td>
<td>0.33×10^{-2}</td>
<td>0.66×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>" 石田屋石灰華 "</td>
<td>0.14</td>
<td>39.2</td>
<td>0.36×10^{-2}</td>
<td>0.60×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>片瀬温泉石灰華 "</td>
<td>0.32</td>
<td>38.1</td>
<td>0.84×10^{-2}</td>
<td>0.95×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>白田温泉石灰華 "</td>
<td>0.33</td>
<td>38.8</td>
<td>0.86×10^{-2}</td>
<td>1.03×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>熱川温泉つちや石灰華 "</td>
<td>0.30</td>
<td>39.0</td>
<td>0.77×10^{-2}</td>
<td>1.07×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>" 岩崎商店石灰華 "</td>
<td>0.33</td>
<td>38.3</td>
<td>0.86×10^{-2}</td>
<td>0.98×10^{-2}</td>
<td></td>
</tr>
<tr>
<td>湯河原温泉石灰華 (不動湯附近) 方解石 "</td>
<td>0.24</td>
<td>39.4</td>
<td>0.61×10^{-2}</td>
<td>0.46×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>
は、噴孔の内壁につくものは主としてアラレ石であり、地表面の引湯管に附着するものは主として方解石であった。北野⁹らの実験によると、カルシウムが炭酸塩として沈殿する際、溶液中のストロンチウムは、それほど微量の場合でも、カルシウムと共沈することが知られてい る。炭酸ストロンチウムの結晶構造は、アラレ石の結晶構造に類似することが判明している。

著者らの分析した石灰華中のストロンチウム及びカルシウムの含有は表3の通りであって、峰温泉について方解石とアラレ石とを比較すると、これらが析出した温泉水はSr/Ca比が類似するが、アラレ石の方が方解石よりもストロンチウム含有量が明らかに大きい。また浅利、北野による当地方の石灰華中のストロンチウム含有は表4に示す通りである。

<table>
<thead>
<tr>
<th>峰温泉、熟川温泉における石灰華のSr含有</th>
<th>Sr %</th>
<th>分析者</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰 (那須会社噴泉2号)</td>
<td>0.19</td>
<td>北野</td>
</tr>
<tr>
<td>峰 (99-100%アラレ石)</td>
<td>0.23</td>
<td>"</td>
</tr>
<tr>
<td>熟川 (100%方解石)</td>
<td>0.20-0.28</td>
<td>浅利</td>
</tr>
</tbody>
</table>

アラレ石中のSr/Ca比と、温泉水のそれとの関係を図示したものが図5である。北野⁹らの実験によるとストロンチウムが、炭酸塩としてカルシウムと共沈する際は、母液中のストロンチウム濃度が増加するに従い、沈殿物中のストロンチウム量が増大することが報告されている。伊豆地方の石灰華については図5に示す結果が得られ、北野の実験結果とおよそ一致する。アラレ石の(Sr/Ca)石灰華/(Sr/Ca)温泉水の比をK_Aとし、方解石のそれをK_Cとしてその値を表3から求めるとき、K_Aは約0.8となり、K_Cは試料数が1個に過ぎないので、0.1程度と
なる。Oxburgh\(^7\) 等の実験によると，\(K_A^{65}\) は 0.66±0.02，\(K_C^{30}\) は 0.11±0.02，\(K_C^{65}\) は 0.07±0.004 であり，著者らの値とは一致することが分る。

5. 結 語

1. 伊豆，箱根地方の温泉のストロンチウム含量は，0.01～18 mg/l であった。ストロンチウムとカルシウムとの間には正の相関が認められた。
2. 伊豆，箱根地方の温泉水の平均 Sr/Ca 比は，火成岩の平均 Sr/Ca 比に近い。
3. 温泉から析出した石灰華を分析した結果，ストロンチウムは方解石よりアラレ石に多い，また温泉水から析出したアラレ石中の Sr/Ca 比は，温泉水中の Sr/Ca 比が大きいほど大きい。

なお終りにのぞみ，この研究に対し，多大の御援助をいただいた東京都立大学理学部無機化学研究室の諸氏に厚く感謝の意を表する。また採水について，御協力を賜った，熱川プリンスホテルの山本稔氏にも謝意を表する。さらにまたこの研究に要した費用は文部省科学研究費によるもので，ここに記して厚く謝意を表す次第である。

文 献

1) 黒田：日化，64, 231 (1943).
2) 浅利：日化，70, 430 (1949).
3) 太秦，那須：日化，81, 430 (1960).
4) 太秦，那須：日化，81, 413 (1960).