奥道後温泉の泉源開発とその化学的
地質学的研究

愛媛大学理学部 高 津 寿 雄*・宮 久 三 千 年
（昭和46年4月20日受理）

Prospecting and Chemical-Geological Studies
on Okudogo Hot Springs

Toshio KOZU and Michitoshi MIYAHISA
Department of Chemistry and Geology, Faculty of Science, Ehime University

Okudogo Spa is situated about 6.5 km ENE of the central part of Matsuyama City, Ehime Prefecture. The rocks of this district are geologically composed of granites, such as biotite granite (Yuyama-type) and granodiorite (Matsuyama-type).

Boring was attempted in 1960–1966 to get more thermal water and was successful. After precise investigation it was found that the waters of these wells were 8.5–9.0 in pH and 32.2–40.4°C in temperature. By chemical research, present authors found that these waters are classified to an alkaline simple type which contained fluorine, hydrogen sulphide and radon respectively.

1. 緒 言

いわゆる非火山性温泉は、湧出量、泉温ともに火山性のそれにくらべて劣るものが多く、その開発の成功例は多くないとと思われる。ごく小規模な冷泉から、湧出量2t/minに近い、優秀な温泉地へと発展した奥道後はそのようなものの1つであり、筆者らはその開発のはじめから完成にいたるまで、主として化学的および地質学的に検討を加えて来たので、その結果をここに報告して非火山性温泉の成因解明の一資料としたい。

尚本報告を集録中にも順次泉源開発を計画中であるがこれは後日紹介することにする。

2. 地域の概要と既往の調査研究ならびに開発

奥道後温泉源のある地区は開発当時は愛媛県温泉郡湯山村といわれ後に松山市に合併して松山市湯山町となり、特に奥道後温泉源の集まっている地区は現在松山市末（すえ）町と改称されている。ちなみに、著名な道後温泉は同じく松山市（もと道後湯之町）にあってここは約4.5kmをへだてている。この末町を貫流している石手川流域には明治時代以前から花崗岩の岩盤の亀裂、細隙から冷鉱泉が僅かに自噴したり、あるいは浸透している箇所が発見されていて、そのうち所によってはその鉱泉水を貯えて加温し、利用していたのであろう湯山七湯などと呼ばれていた記録があるが詳細は不明である。筆者等が調査研究に着手した頃では湯山七湯の位置も遺跡も明確に探査することさえ出来なかった。

* 泉製紙株式会社
この地区について自然科学的に調査されたのは大正2年および同5年当時の大歴省省技師河野久美氏と大島英弘氏の地質調査が始めてであり、さらに昭和14年に昭和日本温泉協会學術委員木崎信一郎氏と同18年東京帝国大学教授加藤武夫博士等諸賢の再三の調査報告があり、温泉源開発に極めて重要な意見も述べられている。その後広島大学教授田中英氏や通産省地質調査所技官中村久由氏等の報告もあるが内容については大同小異であるので、ここでは加藤武夫教授の調査を引用して既往の調査研究の代表としたい。

「松山市湯田町字末は現在松山市末町と改名されているが、この地区を貫流する石手川流域の地盤は震災花崗岩畑となり末町を流れるに至っては峡谷をなし、湯ヶ渕と呼ばれる景勝地となっている。この峡谷は一つの断層戻であり、断層は東北より西南に走りこの主断層に沿って平行な多くの制限線が発達しており、石手川はこの断層砕片帯を浸透、成因して流れている。この付近に露出する岩盤中の斷層鉱物帯と群をなすこれに垂直な割合線より成る主断層帯とが交差する所では、南北方向の割合線から微斜の鉱泉が少量ながら自噴している地点があり、また石手川の両岸に近い水道にもガス泡の見える所もある。これらの自噴鉱泉は多数の硫化水素泉をもとづくが炭酸ガスを伴なっていることが定性的に確認されている。従ってこの地区付近で温泉源を求めるべくポーリングを行う場合は先づ岩盤の断層から自噴水または浸透水を採取して化学試験を行うとともに岩盤の断層帯的方向を調査研究して試験地点を決定すべきである。従ってポーリングは垂直または条件によって傾斜もと考えられる。以上の調査報告について加藤教授は次のように述べておられる。「すなわちこの地域のポーリングは深度300m程度掘進すれば鉱泉の自噴が見られるであろう。熱水泉の上昇は極めて数々たるもので、300mくらいでは入浴に適する程度に達しないであろう。ただしこの鉱泉は岩盤源の温泉が地下水平して上昇して来るものであるから充分に深くポーリングすれば泉温は徐々に上昇するであろう。またこの地域の鉱泉源は如何に深く掘進するも、あるいは水と如何に多量の鉱泉の自噴を得ても、古来有名な道後温泉源に全く無関係であろう。それは温泉の通る割合線が殆どこれに平行で全く別系統のものであるからである。」

これらの調査報告を参考にして昭和17年ポーリングによって湯の元温泉源が開発され、同26年湯ヶ渕鉱泉源、続いて同27年末鉱泉源が竣工を見たのである。これらの鉱泉源については詳細な記録がないが起工関係者の談話と従前の工事日誌の一部および筆者等の調査と研究結果から抄録すると次の如くである

（1）湯の元温泉源

湯の元温泉は湯の山温泉とも呼ばれ現在は松山市末町にある。松山市道後温泉の町にある古来の道後温泉場より東北東約4Km、上述の末町湯ヶ渕渋谷より石手川の下流500m西側で石手川岸より北方向約100mの小さな谷にある。この地域の地盤は黑色母花崗岩岩盤で東北より南西に向って北に断層帯帯と東側を流れる落葉谷川の北側に向う小断層帯帯と交差する地点で付近の小淵河岸の岩盤の断層からガスを伴って鉱泉が自噴するのを見発し、湯の南側約2mの所に垂直ポーリングを行わない。掘進197mで温泉源の竣工を見た。当時の記録によると孔内温度38℃、自噴泉温32℃、自噴量78l/分であったという。昭和28年11月筆者等が調査し化学分析を行った結果は表示の如くであった。すなわち大半の変化はないが約10年を経て自噴量が1分間33l程度減少したことになっている。しかし湯の元温泉と称して現在も加温の上利用している。
（2）湯ヶ淵鉱泉源

既述の松山市末町にある湯ヶ淵渓谷の右岸の黒雲母花崗岩盤の露頭には所々鉱泉の浸透が見られていた。昭和25年の頭金を分配する前断層2箇所の母岩盤亀裂より合計1分間0.78リつ程度の鉱泉が自獲しているのを知った。これが石手川に面する断崖で水面より約75センチおよび156センチの上部にあることから、水面より14メートルの深所から母岩盤に直接垂直ポーリングを行った。この地点は湯の元温泉より東北東約800メートルの距離にある。工事担当者の簡単な記録によれば掘進深度55メートルで鉱泉の自獲が認められ当時の泉温も27℃であった。さらに掘進し約170メートルの深度に達したときに泉温31℃自噴量約797リットル/分、深度188メートルに到って自噴量約820リットル/分を示したが泉温30℃以下を示す状況を見たので工事を中止し応急処置したがこの工事に約11ヶ月を要したという。昭和28年1月筆者等が初めて調査および化学試験を行った結果は表示の如く泉温は29.5℃、自噴量も470リットル/分程度にまで減少していた。その後鉱泉をそのまま石手川に放流し利用することなく現在に至っている。

（3）末温泉

末温泉源は開発当時は松山市大字湯山の内末字正沢を流れる石手川の右岸に発見された。その位置は上述湯の元温泉より南西方約550メートルの地点で石手川はV字状の峡谷を出湯や河床堆積物を求める地形をなし、川岸より河床に続く花崗岩の露岩が比較的平坦である。昭和27年11月この地点付近で僅かに鉱泉を自噴する母岩盤の亀裂を発見し、その亀裂の中央から垂直にポーリングを行った。掘進深度212メートルで自噴量250リットル/分、泉温33.1℃で道後温泉の泉質に酷似し栄養の含有量も多い方であった。竣工後暫時そのまま放流していたが、昭和32年7月より東洋リーノ株式会社の健康保険組合愛媛事業所がこれを浴用に利用する様になった。筆者等は昭和34年1月再び調査し化学試験研究した結果は表示の如く、その含有成分については殆ど変化なく自噴量も略々一定していた。ただ泉温だけが当時は32.3℃であった。

以上3箇所の温泉水は同質の母岩盤上からポーリングを行わない掘進深度も夫々200メートル前後であって特に注目されるのは湯の元、湯ヶ淵の両温泉水は竣工直後と約5年経過後とは自噴量が減少し、泉温も僅かながら低下の状態にある。ただし泉質に就いてはいつれも栄養を含むアルカリ性単純泉として統の変化はほとんど認められない。

以上が既述の調査の概要と、道後温泉地区の出現以前の鉱泉開発の経過である。既述の加藤博士は道後温泉の近代的開発も貢献することが大きかったが、その所見と予想は適確で、地質構造の大綱は今日も殆ど変化のところがないことを特記したい。

3. 奥道後付近の地質

松山市街地にそぞろ石手川の流域の山地は、古いものから順に①高絨変成岩層（おそらく古生代）、②領家花崗岩類（おそらく中生代初期～後期にわたる）とそれに伴う岩脈類、③和泉礫岩層群（上部白亜紀）、④火山岩の小岩体群（新第三紀）および⑤第四紀層などであり、温泉源はこのような地質として②の花崗岩類から湧出している。なお、四国西部においては、上記のいずれもを母岩として大小多くの温泉冷泉が存在している。

花崗岩類はつぎの3つの岩体群にわけられる。その1つは松山型とよばれる粗粒塊状の角閃石黒雲母花崗岩岩盤で、SiO2 63～65%の範囲にあり、新鮮な露頭においては筋脈の間隔がやや
広く数 10 cm を示し堅硬な岩盤をなす。しばしば粘土をともなう剪断面やその集合（いわゆる破砕帯～碎礫帯）をみると、また解理にそっても、クロライトやローモンタイトの沈黴物を含み、過去の熱水脈流路を示すものが多い。道後温泉はこの岩盤を母岩としている。その 2 は湯山型とよばれる中粒～細粒の黑雲母花崗岩で、SiO₂ 65～73% の優質石岩からなり、細裂縫にとどめ、また圧碎部が多い。奥道後温泉の石英をもつ中より涌出する。その 3 は花崗斑岩～石英斑岩の岩脈で、走向 NNW を示して主として松山型の区域に数多く見出される。

以上の 3 者の新→旧関係は、野外観察からは松山型→岩脈→和泉層群。および和泉型→湯山型、の関係が明らかである。一方、湯山型と岩脈、および湯山型と和泉層群のそれぞれの新旧関係は不明である。

奥道後温泉付近の断層や節理の分布は付図のとおりである。石手川の流路方向にほぼ平行するENE→WSW 系統と、それに直交する NNW→SSE あるいは N→S 系統の断層が注目される。いずれも急傾斜であり、延長方向にはあまり長くつかず、断層幅は 1 cm 以下のうすいものである。これらの性質は移動量の小さい小規模の剪断面であることを示している。

古くからの自然涌出地点は、このような断層の 2 系統の交叉部か、あるいは断層面に近接して節理の密集するような所である。要するに展張性の応力 (tension stress) の働いた環境が亀水脈流路同様のものである。すなわちここでの、泉源が 1 枚の岩脈（割れ目）にそって細長くつづくものではなく、3 次元的ひろがりをもつ網目状割れ目群にそう上昇を示し、そのひろがりの範囲を把握することが、地下の泉源を有効に獲得する手段となることが予想される。しかしながらこの地域が幼年期の急峻な V 字谷地形をなすとの要素も考慮すべきで、探査地はおおむね谷底もしくはに限定されることになる。現在までにポーリングによって開発された亀水脈伏在の範囲は断層図 (地質図) に示すことよりである。

奥道後温泉の科学的検討のうち、最も欠けるのは地球物理学的分野である。電探がその効果の少ないゆえもあって、物理的データは少なく、地下温度分布も不明であるが、近接する道後温泉の地下温度の詳細なデータを入手した第 1 圖断面図に等温カーブをえがいてみた。地表のそれが西に頼り非対称の配置を示することは確認されており、道後と奥道後という 2 つの異常増温区域は、一応、図示のように沿平均的な温度分布図にあっていてほどうえているものとみる。二つの温泉はそれぞれ 1.5～1.8 t/min の温泉を利用しているがすぐのところ相互に涌出量の干渉は見出されていない (将来、より強力な汲上げを行うならばどうなるかは予測できぬが、加藤博士ものべたように、この 2 つの温泉が 1 本につながる断層のごとき共通の泉脈を有するのでなく、平行する NW 系割れ目群を示もた上昇流路とするためであろう。

非火成性温泉の成因につぶれる問題であるが、これらの温泉水の根源が地表に顯在または地下に潜在する何らかの火成岩体によるとの仮説がある。この地域においては、湯山花崗岩体という、一見するとそのような関係火成岩を考えさせる基本岩体がある。地表に露出のない道後温泉でも、地下にそれが潜在する可能性は否定するが、もし安易にそれを熱源とすることは今ただちに質問を表しがたく、もし温泉分布の関連ありとすれば、むしろそののち物理的性質、すなわち他の花岩岩体にくらべて割れ目にとむことや、SiO₂ の多い優質石岩体の、地殻変動に際しての上昇運動とそれに伴う温泉水の集中・上昇の可能性、などを検討、考察したいと思う。
4. 奥道府温泉の最近の開発について

昭和34年3月よりこの地区の大規模開発が計画され、筆者らは調査と研究の機会があったので、故瀧野錦蔵博士（当時京都大学教授）らの援助のもとに地質構造を全般的に再調査し、また源泉を測定調査するための検討と、採取した鉱泉の化学試験を行なって、以下順次のべるようなポーリング地点の選定を進めた。また掘進途中、岩芯検討と採水の化学分析を行なって、養分を判定するなど、奥道府温泉開源の開発に協力して、今日に至っている。

（1）奥道府温泉第一号源

奥道府温泉第一号泉は当時松山市湯山町末字城山乙269番地の1にあった。現在は松山市末町と改称されている。ポーリング地点は既開発の湯の元温泉源の東方約150m隔った下裳谷の麓（海抜120m）で松山市より越智郡玉川町鈴川に通ずる県道より約13m高所の段畑中に立った。この段畑の西側には深さ約5mの野井戸があり周囲の畑への灌漑用水を得る目的で掘ったものであろうが、地区の地勢状況から協議の結果試みにこの井戸の底部約35cmの深さに湧出する水についての予備化学試験を行った結果、鉱水を含む弱アルカリ性単純泉の泉質を有することを認めたので井戸底の母岩岩盤の節理の状況（N10W，70°W）からみて、これより北東約5mの畑地の中の地点を定めて垂直ポーリングを開始し深度約500mまで掘進して竣工した泉源である。地表から花崗岩板岩層約（5m）、同種の砂礫層（4m）軟弱な灰白色の風化花崗岩（9m）を経て堅硬な岩盤に達した。昭和34年12月2日に入掘進375mで微かに硫化水素臭を嗅ぎ出しつつ湧水を得たが自噴する状態には到らなかった。昭和35年2月8日掘進深度800mに達して自噴鉱泉水を得たのでポーリング孔に径10cmの鋼管70mを挿入したところ地表より約67cmの鋼管より約32l/minの鉱泉の自噴を得たのである。ポーリングを一時休止し2週間放流後に試水を採取して化学試験を行い表示の結果を得た。すなわちラドン、鉱素および硫化水素を含有するアルカリ性単純泉としての泉質を有することを確認した。この源泉を利水して奥道府温泉第一号源泉と称することにした。今日の奥道府温泉場開設の端緒となったものである。

この第一号泉について泉温の上昇および自噴量の増加を目的にさらにポーリングを続行することを計画したが、本源泉が既設の温泉源に比して高所の位置にあることから、自噴孔を約10m下げたところより側管で鉱泉を放出したところ温度には殆ど変化なく自噴量は約100l/minに増加することの結果を得た。

（2）奥道府温泉第二号源

奥道府温泉第二号泉は第一号泉の南南西約100m隔てた石手川岸にあって第一号泉より約35m低位置にポーリング地点を選定した。この地点の南側は湯山型花崗岩よりなる断崖絶壁をなし石手川の水面までは約7mあって水面に近い岩盤の細隙から（N53E，72Nの剪断面）僅かに鉱泉の浸出が見られ石手川に滴下するのを発見し、これを採取して化学試験を行ない第一号泉の泉質に酷似していることから、この断崖母岩盤上から垂直ポーリングに着工した。地点の位置は当時松山市湯山町末字城山乙270番地の狭い畑の中程にあたる。約50cmの表土の下は上述の花崗岩盤であった。掘進深度250mで鉱泉の自噴を著しく工事の進行が困難となったので作業を中止した。

自噴量約296l/min、約30日放流し昭和35年6月2日試水を採取し化学試験を行ない表示の如き結果を得た。第一号泉の泉質に比較すればラドン、鉱素および硫化水素の含有量も多く
<table>
<thead>
<tr>
<th>源泉名</th>
<th>湯の元</th>
<th>鉱泉</th>
<th>温泉</th>
<th>湯泉</th>
<th>第一号泉</th>
<th>第二号泉</th>
<th>第三号泉</th>
<th>第四号泉</th>
<th>第五号泉</th>
<th>第六号泉</th>
<th>第七号泉</th>
<th>第八号泉</th>
</tr>
</thead>
<tbody>
<tr>
<td>試水採取年月日</td>
<td>28-1-12</td>
<td>28-11-2</td>
<td>34-1-27</td>
<td>35-2-22</td>
<td>35-6-2</td>
<td>35-10-8</td>
<td>36-6-23</td>
<td>37-3-19</td>
<td>37-8-20</td>
<td>37-12-16</td>
<td>37-12-16</td>
<td></td>
</tr>
<tr>
<td>源泉深 度 m</td>
<td>188</td>
<td>197</td>
<td>212</td>
<td>500</td>
<td>250</td>
<td>450</td>
<td>360</td>
<td>460</td>
<td>507</td>
<td>412</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>自 噴量 L/分</td>
<td>470</td>
<td>45</td>
<td>250</td>
<td>100</td>
<td>296</td>
<td>12</td>
<td>267</td>
<td>260</td>
<td>279</td>
<td>201</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>気温 ℃</td>
<td>29.5</td>
<td>32.7</td>
<td>32.3</td>
<td>32.8</td>
<td>29.8</td>
<td>20.1</td>
<td>34.6</td>
<td>38.0</td>
<td>39.9</td>
<td>40.4</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.7</td>
<td>8.6</td>
<td>9.2</td>
<td>9.0</td>
<td>8.9</td>
<td>8.5</td>
<td>8.2</td>
<td>8.8</td>
<td>9.0</td>
<td>9.0</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>煙発残渣 mg/kg</td>
<td>149.1</td>
<td>300.9</td>
<td>229.1</td>
<td>336.6</td>
<td>328.0</td>
<td>106.6</td>
<td>339.0</td>
<td>340.2</td>
<td>351.5</td>
<td>355.4</td>
<td>349.7</td>
<td></td>
</tr>
</tbody>
</table>

Li⁺	-	-	-	108.1	105.0	90.0	112.0	114.0	114.7	127.0	120.9
Na⁺	33.6	72.2	35.1	500	120.5	120.5	120.5	120.5	120.5	120.5	120.5
K⁺	4.0	4.4	2.2	1.20	0.50	1.25	1.60	0.75	1.06	1.05	1.40
Ca²⁺	9.2	8.4	8.0	5.43	2.04	19.80	4.29	2.09	3.70	2.91	3.45
Mg²⁺	0.4	0.9	1.7	0.32	1.89	0.85	0.22	0.25	0.93	0.38	0.37
Fe³⁺	0.6	0.9	1.2	0.41	0.39	0.05	0.88	0.43	1.00	0.11	0.64
Fe²⁺	疑	疑	疑	0.12	0.17	疑	0.28	0.33	0.20	疑	0.31
A³⁺	1.3	1.1	1.0	13.80	15.75	0.25	11.25	13.00	13.30	13.01	14.20
Cl⁻	97.7	94.0	24.1	108.80	106.92	16.75	115.90	133.60	129.40	144.50	139.81
SO₄²⁻	12.9	15.1	15.2	13.00	18.81	18.64	6.50	3.29	12.40	7.85	7.20
HCO₃⁻	-	-	-	37.71	42.58	63.71	38.07	26.26	33.25	27.68	30.49
CO₂⁻	-	-	-	2.21	1.93	1.18	0.36	0.97	1.96	1.04	2.41
HPO₄²⁻	疑	疑	疑	0.78	0.44	疑	疑	疑	0.41	0.61	0.72
H₂SiO₃	20.6	40.2	37.7	40.07	43.73	20.54	40.29	44.13	53.38	43.84	46.62
H₂S	疑	疑	疑	3.40	4.00	疑	4.10	4.35	3.80	4.50	3.71
總CO₂	72.1	74.6	91.6	-	-	-	0.09	0.13	0.49	0.58	0.10
Rn	3.66	1.16	4.14	-	-	-	5.96	21.52	31.61	13.04	7.66

(詳細な注釈や解釈が必要な場合は、具体的な内容を提供してください。)
アルカリ性単純泉であることを確認した。この源泉を奥道後温泉第二号源泉とし現在利用している。

（3） 奥道後温泉第三号源泉

奥道後温泉第三号源泉は当時松山市宿野字向河原甲 289 番地の 1 の狭い畑地の中にある、ボーリング地点の位置は既述の湯ヶ瀬鉱泉源の東北東約 270 m、石手川に架かる宿野川橋畔西側より 30 m 南方で石手川岸より 9 m 西にある。この地点の下方石手川左岸に露出する花崗岩岩盤のなかには、N6E、76°E の断層があってこれに方解石の細脈を伴なうので、おそらく古い鉱泉水の上昇通路であろうと推定し、ボーリング地点を選定した。現在の奥道後温泉の源泉としては最東端にあたっている。昭和 35 年 5 月ボーリングに着手し、河床堆積物 4 m で母岩盤に達し、370 m まで掘進する間はコアを観察するに、第一号泉および第二号泉と同様であったが以下 400 m の深度に到るまでに出た黑雲母和白雲母帯の珪質岩（フェルサイト）に遭遇し、その約 2 ～ 4 m を抜くのにきわめて困難であった。第三回目のこの種の層に達したときボーリングを中止した。昭和 35 年 10 月 8 日ボーリング孔の鋼管ケースより流出する鉱泉を採取し化学試験を行った。当時の温泉水 21.1°C、自噴流量は約 12 l/min で他の鉱泉源に比して望ましく考えられたがラドン含有量が特に多く再三の測定による平均値が 31.6 l/m となったのでその利用法を考慮中である。なお一応ポンプ汲み試験等を試みたが成功しなかった。現在では孔口のケーシング鋼管には密栓をして保護し利用はしていない。しかしこれを奥道後温泉第三号源泉としている。

（4） 奥道後温泉第四号源泉

奥道後温泉第四号源泉は当時松山市湯山町末字湯の本甲 268 番地に開発された源泉で、第二号源泉の西南西方 100 m、石手川左岸に近い地点を選定してボーリングを行なったものである。露頭花崗岩岩盤に直接垂直ボーリングを行ない、深度 310 m 付近から自噴温泉水が得られ、深度約 360 m に達する頃には泉温 34.6°C、自噴流量 267 l/min を得るので単に工事を竣了とした。温泉水は石手川に放流していたが約2ヶ月後に試水を採取し化学分析を行った結果は表示の如く弗素、硫化水素およびラドンを含有するアルカリ性単純泉であることを確認した。当時の源泉付近では硫化水素臭が感じられ、近郊の人々は湯の香があると称して重宝していた、これを奥道後温泉第四号源泉とした。

（5） 奥道後温泉第五号源泉

奥道後温泉第五号源泉は第四号泉と同地番中にあって接近し北方約 10 m を離れた高所にボーリング地点を選定した。これは石手川の河川敷に近い第四泉は増水期に源泉が水没するおそれがあるためである。位置が広々畑の一端にあってほぼ 1 m の粘土と土砂層を経て母岩盤に達し後同様に掘進し深度 460 m で竣工した源泉である。孔底温度 40.2°C、泉温 38°C、自噴流量 260 l/min、試水の化学分析結果は表示の如く弗素、硫化水素およびラドンを含むアルカリ性単純泉としての泉質をもつ、奥道後温泉の源泉では最優秀であった。この奥道後温泉第五号源泉の竣工後既に松山市末町地区に奥道後温泉場を建設するべく土木工事を進行し始め、石手川の流域の所々は地形が綾くれた道路の曲り角などは削り取って道幅を広くし建築地を整備することなどの大工事が進められていた。

（6） 奥道後温泉第六号源泉

奥道後温泉第六号源泉は第四、第五の両源泉と同地区同地番中にあってその位置を第五号泉よ
り約7m 西北西の地点に選定しボーリングは方向 S80°W、傾斜角下向 80° の傾斜掘進したものです。その理由はこの地点が NS, NE, NNW などの各系の割れ目の交錯であることから、既に竣工した源泉のほかに温泉の湧出孔を得る可能性のあることおよび既設孔の影響を見ることが出来ることを考慮して工事を進めたものである。基盤をなす花崗岩盤も岩質一様で、コースの形態もボーリングの深度によって変化が見られず淡黄緑色の湯型花崗岩であった。掘進深度約 507m にして孔底温度 43°C、泉温 39.9°C、自噴量約 279l/min を得たので工事を竣工とした。鉱泉は暫時放流しての了約 3 週間後化学試験を行った結果は表示の如く従来の源泉の泉質に酷似し優秀なる温泉源であることを確認した。竣工後簡単な源泉の装備を行なった後これを奥道後温泉第六号源泉とした。此処には奥道後温泉場の建設も進行し既設源泉も送湯管を設置し付近一帯は地ならし工事が進めて既設源泉の温泉水採取の状況は急速してきた。

（7） 奥道後温泉第七号源泉

奥道後温泉第七号源泉は次に記述する第八号泉と共に第六号泉より東北東方約 86m、第二号泉の北西方約 46m を隔てた頃の地中間にボーリング地点を選定し第七号泉は垂直に、第八号泉は斜蛾することにした。地点はいづれも六号泉とは同地区内で地番が判明しなかったが冲積層約 1.5m で母岩盤に達し深度 412m で竣工とした。孔底深度 43.2°C、泉温も当初は 40.4°C を示し自噴量 201l/min であった。竣工2ヶ月後第八号泉と同時に化学試験を行ない表示の結果を得た。

（8） 奥道後温泉第八号源泉

奥道後温泉第八号泉のボーリング地点は第七号泉と同所で下向 80°、南 55° 西の方向に傾斜掘進を行ない深度 392m で自噴量 220l/min を得た。工事担当者の手記によれば深度 380m のときに孔底温度 38.2°C、泉温 36.1°C を示し以下ボーリングを進行するも温泉の上昇も、自噴量の増加も見られなかったのでボーリングを中止し奥道後温泉第八号源泉を竣工とした。

以上第四号源泉より第八号源泉に至る 5 階所の源泉は互いに相接しているに問わず各源泉の自噴量に大きいか相互の干渉関係は見られなかったのみならず奥道後温泉源域中のいづれよりも優秀であった。

その後順次これらの地区よりすらに離れた地区にボーリングを行ってみてはいるが、いづれも特記する程のものはなく、いづれもこれら以下であるので、いづれの日にか優秀な新源泉の開発竣工を見た際には改めて上述にならって詳細報告をすることにする。

稿を終るに臨み本研究結果の一部は既に本学会ならびに日本化学会に於て報告講演をした。なおまた長期に涉って研究したことにについては文部省より科学研究費交付金を逐次支給を受け、また愛媛大学地域社会研究所よりも研究費を給与されたのち今迄深甚なる感謝の意を表す。

なおまた研究総論中、工事現場への案内、試料採取、種々の測定器の運搬等に尽力下さった坪内寿夫氏ならびに兵頭平吉氏に篤く御礼申し上げる。また長期に涉って試験研究を終えた協力された愛媛大学助教授河瀬明博氏および当時愛媛大学教授であった御手洗清氏。花崗岩類の考察に関し援助された愛媛県大洲高等学校教諭平岡卓郎氏に敬意を表し謝意を表する。
文 献

1) 河野 密：農商務省地質調査所報告 第48号 (1914).
2) 大柴洋之助：農商務省地質調査所報告 第59号 (1916).
3) 小林義一郎：道後温泉調査報告（手記）道後温泉事務所保管 (1930).
4) 加藤武夫：道後温泉調査報告（手記） (1943).
5) 高津寿雄・豊田英義・須賀正夫・細原好一：温泉の研究 (1) 愛媛大学地域社会総合研究所研究報告 B シリーズ第4号 (1955).
6) 宮久三千年・野間泰二・石橋 清：愛媛県道後温泉付近の地質、愛媛大学紀要 II. D. 3 巻2号 (1959).
平岡卓郎：湯山花崗岩と松山花崗岩、愛媛の地学記念号 (1967).