The Interaction between the Brine-Calcite in Arima and its Vicinity of Hyogo Prefecture

Kiyoshi TERANISHI, Kimio ISOMURA and Kenzo YAMAMOTO
Public Health Institute of Hyogo Prefecture
(Received January 6th, Accepted April 13th, 1988)

Abstract

The chemical compositions of 44 Na (Ca) -Cl and Na (Ca) -Cl-HCO$_3^-$ type spring waters in Arima, Takarazuka, Kawanishi-Inagawa, Touban and Shiota were determined and the minerals contained in deep cores from eight wells in Arima and Takarazuka were identified by powder X-ray diffractometry. In this paper, the origin of HCO$_3^-$ was discussed from the standpoint of calcite-brine equilibrium.

Four low temperature (＜80℃) brines of high Cl content (＞10g/kg) in Takarazuka and the five low temperature brines of low Cl content (＜10g/kg and 0.5g/kg) in Takarazuka, Kawanishi-Inagawa and Shiota were found to be oversaturated with calcite. The values of partial CO$_2$ pressure were calculated on the ground of the equilibrium equations with calcite under a subsurface condition at the respective well are almost constant (3.85 atmospheric pressure at 50℃) for all the wells studied. In addition the presence of calcite was proved by the powder X-ray diffractometry on the samples of the deep core of Paleozoic age from Miroku well in Takarazuka. These findings indicate that the carbonate species in these spring waters come from the calcite in the Paleozoic Sedimentary rocks.

The oversaturations with calcite at a presumed temperature of 80℃ were also observed for the low temperature waters with high Cl content in Arima. Calcite was found in the deep cores from these wells too. Carbonate species of these brines in Arima seem to come from calcite in wall rocks.

緒　言

有馬温泉は六甲山地の北側に湧出している。湧出母岩は白亜期後期の流紋岩であり、その南側にはほぼ同期の六甲花崗岩帯が貫入している。有馬温泉の化学成分については池田の研究を始め
古くから調査されているが総合的な泉質調査は1964年の鶴巻らの報告が最初である。
有馬、宝塚、川西、猪名川、東播、塩田等兵庫県南部に広く分布している食塩泉の涌出機構は
複雑で、特に塩素イオンと炭酸の起源について以前から多くの研究者によって論議されてきた。
最近、URABEらは泉ガス中のヘリウム3とヘリウム4の同位体比の研究結果から有馬、宝塚
地区での比較的新しいマグマの活動の存在を示唆している。また、益田らは、ボーリング
コアの鉱物成分と泉質の調査結果からマグマ起源の塩水と炭酸水素イオンに富む清流地下水と
の混合モデルを提唱している。
我々は調査の報告以降、新しく掘削された7泉源を含む有馬地区の38泉源および宝塚、川西・
猪名川、東播、塩田の合計44泉源の水質と泉源のボーリングコアの鉱物を分析し、温泉水中の炭
酸の起源について検討した。有馬の高圧高塩泉および中低温弱塩泉を除いて、調査した地域の温
泉の炭酸は地下水のカルサイト塩水均衡由来であること、これが清流地下水となって有馬
の食塩泉の炭酸の起源の一つにもなっていると考えられる結果を得たので報告する。

調査と測定方法

1）試料
採水は自然湧出の場合は湧出口から、ボーリングの場合にはできるだけボーリング孔に近い
パイプから採水した。採水した試料は直ちに温度、pHを測定し、また炭酸水素イオンを測定し
た。さらに採水した試料は直ちに錫泉分析法指針（環境庁自然保護局）に従い現地処理し実験室に
持ち帰り分析を行った。

2）分析方法
分析方法は主に錫泉分析法指針に依った。
a）温度：標準温度計を用い、高湯の場合は標準温度計で校正した留点温度計もしくはサーミスタ
温度計で測定した。
b）pH：ガラス電極を用いたpH計にて測定した。
c）炭酸水素イオン、炭酸イオン：フェノールフルタレイン及びメチルレッドーブロムクレゾールグリーン
 Attend the following text: 2004年1月20日
結果

1）温泉のグループ別と泉源の位置

調査した温泉の水質分析結果の一部を表1に示す。調査した兵庫県南部の44泉源は塩素イオンと温度によって4つのグループに大別した。塩素イオン濃度が10g/kg以上を強塩泉、0.5g/kg以上10g/kg未満を弱塩泉グループとし、0.5g/kg未満を単純泉とした。さらに強塩泉で泉温80℃以上を高温強塩泉グループとし、他の食塩泉は中低温強塩泉、中低温弱塩泉とした。単純泉は伏流水を主とする単純CO₂泉及び単純Rn泉で有馬の7泉源（No.22-28）及び宝塚の泉源（No.41）がこれに含まれる。塩素イオン濃度によって区分される強塩泉は有馬の14泉源と宝塚の4泉源であり、そのうち有馬の7泉源のみが高温強塩泉である。高温強塩泉を除いた有馬の7強塩泉とみかえり橋泉（No.42）を除いた宝塚の4泉源が中低温強塩泉に、また塩田、東播、川西・猪名川の泉源群はすべて中低温弱塩泉に分類される。第4の単純泉グループについては表1に結果を示すのみで以後の解析と考察から除外した。

有馬地区の28泉源の位置を図1に示す。高温強塩泉は射場山断層の北側有馬天満宮周辺0.5km以内に局在している。第3グループの中低温弱塩泉は六甲川、滝川に対して高温強塩泉を囲む形で分布している。中低温強塩泉は高温強塩泉グループの北側の唐倉から歯歯の尾山へ向けて直線上に広く分布している。図2で示すように宝塚温泉のグループは有馬の東約8kmの武庫川沿いに、川西・猪名川グループは有馬の北東16-24kmの猪名川沿いに位置している。東播グループ、塩田グループは有馬の西北西20kmおよび西54kmに点在している。

2）塩素イオン濃度と主要陽イオンとの関係

塩素イオン濃度とナトリウムイオン濃度の関係を図3に示す。高濃度領域では、有馬の単純CO₂泉とRn泉を除く全ての温泉と宝塚の温泉が同じ勾配の直線に乗り、これは東播グループと明らかに区別される。また低濃度領域では、川西・猪名川の温泉グループは有馬、宝塚グループより勾配の大きい直線関係を示した。塩田の2泉源（Nos.33,34）のNa/Cl比は東播グループと相違し、有馬および猪名川グループに類似している。

塩素イオンとカリウムイオン濃度の関係を図4に示す。塩素イオンとナトリウムイオンの関係で同じ勾配を示した有馬、宝塚のグループが2つの異なった勾配の直線関係を示した。有馬の高温強塩泉と中低温弱塩泉が同じ勾配を示し、他方有馬の中低温強塩泉と宝塚、川西・猪名川の温泉が同一の直線関係を示した。東播グループはNa/Cl比の場合と同様に他の2つの直線と相違し、K/Cl比がきって低い直線関係を示した。高濃度領域でも明確に別のグループに区別された3つの直線関係を示している。

それぞれのグループのNa/Cl比とK/Cl比の平均値をまとめると表2のようになる。平均値の差の検定から、これらのグループのNa/Cl比とK/Cl比の平均値はそれぞれ1％の危険率で統計的に有意の差を示した。また同様の検定から、有馬の高温強塩泉グループと有馬の中低温弱塩泉グループのK/Cl比は統計的に有意差がなく、両グループのK/Cl比は同一のグループの属していると認められる。

これら温泉水のNa/Cl比の結果は、兵庫県南部の温泉が有馬・宝塚、川西・猪名川、東播の3つのグループに大別されることを示している。このことは兵庫県南部の温泉を、水質成分と酸素、水素同位体比から3つのグループに分類した益田らの結果を支持している。東播グループは益田らのグループ分けに従えば、流紋岩質変性岩を基盤とするⅢ型であり、川西・猪名川グループは古生代堆積岩を基盤とするⅡ型の温泉群になる。
表1 温泉水の化学成分

<table>
<thead>
<tr>
<th>Na</th>
<th>泉源名</th>
<th>泉温（℃）</th>
<th>残渣（g/kg）</th>
<th>pH</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>御所</td>
<td>87.8</td>
<td>28.41</td>
<td>6.17</td>
<td>8740</td>
</tr>
<tr>
<td>2</td>
<td>王義</td>
<td>88.6</td>
<td>30.27</td>
<td>6.30</td>
<td>9010</td>
</tr>
<tr>
<td>3</td>
<td>極楽</td>
<td>94.7</td>
<td>26.59</td>
<td>6.86</td>
<td>8630</td>
</tr>
<tr>
<td>4</td>
<td>天神</td>
<td>94.7</td>
<td>57.77</td>
<td>6.10</td>
<td>15900</td>
</tr>
<tr>
<td>5</td>
<td>有明1号</td>
<td>86.6</td>
<td>39.50</td>
<td>5.96</td>
<td>11800</td>
</tr>
<tr>
<td>6</td>
<td>有明2号</td>
<td>96.0</td>
<td>35.83</td>
<td>6.38</td>
<td>11400</td>
</tr>
<tr>
<td>7</td>
<td>花の坊</td>
<td>94.6</td>
<td>64.02</td>
<td>6.70</td>
<td>16100</td>
</tr>
<tr>
<td>8</td>
<td>温泉病院1号</td>
<td>42.0</td>
<td>63.43</td>
<td>6.22</td>
<td>17200</td>
</tr>
<tr>
<td>9</td>
<td>温泉病院2号</td>
<td>63.2</td>
<td>54.88</td>
<td>5.90</td>
<td>16500</td>
</tr>
<tr>
<td>10</td>
<td>銀水苑</td>
<td>32.1</td>
<td>73.27</td>
<td>6.10</td>
<td>24900</td>
</tr>
<tr>
<td>11</td>
<td>有和苑</td>
<td>23.0</td>
<td>37.90</td>
<td>5.62</td>
<td>8340</td>
</tr>
<tr>
<td>12</td>
<td>龍泉閣</td>
<td>21.5</td>
<td>32.39</td>
<td>6.81</td>
<td>9230</td>
</tr>
<tr>
<td>13</td>
<td>大和観光</td>
<td>28.2</td>
<td>38.112</td>
<td>6.06</td>
<td>10800</td>
</tr>
<tr>
<td>14</td>
<td>萩石</td>
<td>62.0</td>
<td>28.352</td>
<td>6.03</td>
<td>9410</td>
</tr>
<tr>
<td>15</td>
<td>月光園</td>
<td>31.6</td>
<td>8.620</td>
<td>5.70</td>
<td>2460</td>
</tr>
<tr>
<td>16</td>
<td>ヘルスセンター1号泉</td>
<td>63.4</td>
<td>5.134</td>
<td>6.41</td>
<td>1710</td>
</tr>
<tr>
<td>17</td>
<td>ヘルスセンター2号泉</td>
<td>31.2</td>
<td>2.194</td>
<td>7.27</td>
<td>736</td>
</tr>
<tr>
<td>18</td>
<td>銀泉</td>
<td>47.0</td>
<td>2.420</td>
<td>5.78</td>
<td>692</td>
</tr>
<tr>
<td>19</td>
<td>天野泉</td>
<td>36.8</td>
<td>3.149</td>
<td>6.30</td>
<td>963</td>
</tr>
<tr>
<td>20</td>
<td>リッチライフ1号泉</td>
<td>21.3</td>
<td>3.648</td>
<td>5.93</td>
<td>896</td>
</tr>
<tr>
<td>21</td>
<td>リッチライフ2号泉</td>
<td>20.4</td>
<td>2.949</td>
<td>5.41</td>
<td>942</td>
</tr>
<tr>
<td>22</td>
<td>有馬グランドホテル</td>
<td>14.5</td>
<td>2.045</td>
<td>6.36</td>
<td>590</td>
</tr>
<tr>
<td>23</td>
<td>神戸市Rn泉</td>
<td>29.4</td>
<td>0.749</td>
<td>7.01</td>
<td>263</td>
</tr>
<tr>
<td>24</td>
<td>山之内泉</td>
<td>12.4</td>
<td>0.220</td>
<td>4.56</td>
<td>16.3</td>
</tr>
<tr>
<td>25</td>
<td>神戸市CO₂泉</td>
<td>17.8</td>
<td>0.163</td>
<td>4.00</td>
<td>10.8</td>
</tr>
<tr>
<td>26</td>
<td>神鉄Rn泉</td>
<td>19.0</td>
<td>0.202</td>
<td>6.70</td>
<td>46.5</td>
</tr>
<tr>
<td>27</td>
<td>ヴィヴィ有馬</td>
<td>16.9</td>
<td>0.242</td>
<td>6.28</td>
<td>39.1</td>
</tr>
<tr>
<td>28</td>
<td>総合経営</td>
<td>17.6</td>
<td>0.228</td>
<td>6.36</td>
<td>47.0</td>
</tr>
<tr>
<td>29</td>
<td>社沢田泉（嬉野）</td>
<td>—</td>
<td>3.912</td>
<td>7.20</td>
<td>827</td>
</tr>
<tr>
<td>30</td>
<td>社菴園泉</td>
<td>—</td>
<td>14.529</td>
<td>7.48</td>
<td>2160</td>
</tr>
<tr>
<td>31</td>
<td>東慶川原</td>
<td>21.5</td>
<td>9.927</td>
<td>7.36</td>
<td>1920</td>
</tr>
<tr>
<td>32</td>
<td>加古川見登呂</td>
<td>—</td>
<td>2.671</td>
<td>7.65</td>
<td>393</td>
</tr>
<tr>
<td>33</td>
<td>塩田知新荘</td>
<td>16.6</td>
<td>2.690</td>
<td>6.21</td>
<td>520</td>
</tr>
<tr>
<td>34</td>
<td>塩田上山旅館</td>
<td>14.8</td>
<td>4.330</td>
<td>6.30</td>
<td>1250</td>
</tr>
<tr>
<td>35</td>
<td>猪名川杉生</td>
<td>14.2</td>
<td>2.208</td>
<td>5.89</td>
<td>696</td>
</tr>
<tr>
<td>36</td>
<td>川西石道</td>
<td>16.6</td>
<td>5.542</td>
<td>6.14</td>
<td>1740</td>
</tr>
<tr>
<td>37</td>
<td>川西平野北</td>
<td>28.5</td>
<td>5.612</td>
<td>6.29</td>
<td>1650</td>
</tr>
<tr>
<td>38</td>
<td>川西平野南</td>
<td>27.5</td>
<td>5.482</td>
<td>6.31</td>
<td>1520</td>
</tr>
<tr>
<td>39</td>
<td>西宮生瀬（細谷）</td>
<td>15.8</td>
<td>24.322</td>
<td>6.28</td>
<td>6960</td>
</tr>
<tr>
<td>40</td>
<td>宝塚寿</td>
<td>19.1</td>
<td>28.302</td>
<td>6.17</td>
<td>8240</td>
</tr>
<tr>
<td>41</td>
<td>宝塚寿離地下</td>
<td>18.6</td>
<td>0.792</td>
<td>6.29</td>
<td>210</td>
</tr>
<tr>
<td>42</td>
<td>宝塚見返り橋</td>
<td>16.7</td>
<td>10.096</td>
<td>6.02</td>
<td>2760</td>
</tr>
<tr>
<td>43</td>
<td>宝塚若水</td>
<td>20.2</td>
<td>27.382</td>
<td>6.22</td>
<td>8750</td>
</tr>
<tr>
<td>44</td>
<td>宝塚ミクロ</td>
<td>36.8</td>
<td>29.440</td>
<td>6.57</td>
<td>9410</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Cl</td>
<td>HCO₃⁻</td>
<td>CO₂ gas</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1520</td>
<td>866</td>
<td>17000</td>
<td>201</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td>916</td>
<td>17200</td>
<td>131</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>1730</td>
<td>720</td>
<td>16100</td>
<td>432</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3410</td>
<td>3180</td>
<td>34900</td>
<td>28.2</td>
<td>37.6</td>
<td></td>
</tr>
<tr>
<td>1570</td>
<td>1430</td>
<td>22600</td>
<td>29.7</td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>2170</td>
<td>1510</td>
<td>23300</td>
<td>60.5</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>2900</td>
<td>3370</td>
<td>34600</td>
<td>88.8</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>1560</td>
<td>38300</td>
<td>994</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1180</td>
<td>1630</td>
<td>32800</td>
<td>552</td>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>1480</td>
<td>2030</td>
<td>43200</td>
<td>963</td>
<td>1410</td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td>1380</td>
<td>17800</td>
<td>205</td>
<td>825</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>1790</td>
<td>18800</td>
<td>1100</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>1560</td>
<td>2360</td>
<td>20630</td>
<td>1084</td>
<td>1697</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1160</td>
<td>16920</td>
<td>287</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>435</td>
<td>5090</td>
<td>352</td>
<td>1180</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>132</td>
<td>3015</td>
<td>515</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>74.7</td>
<td>8.3</td>
<td>1190</td>
<td>319</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>26.4</td>
<td>1520</td>
<td>268</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td>90.5</td>
<td>211</td>
<td>1620</td>
<td>482</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>42.4</td>
<td>266</td>
<td>1810</td>
<td>508</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>96.1</td>
<td>1530</td>
<td>101</td>
<td>661</td>
<td></td>
</tr>
<tr>
<td>97.3</td>
<td>49.4</td>
<td>474</td>
<td>568</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>8.40</td>
<td>27.4</td>
<td>418</td>
<td>125</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>3.60</td>
<td>16.0</td>
<td>26.1</td>
<td>19.7</td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>24.0</td>
<td>27.7</td>
<td>10.0</td>
<td>1680</td>
<td></td>
</tr>
<tr>
<td>1.94</td>
<td>17.9</td>
<td>69.4</td>
<td>45.8</td>
<td>34.9</td>
<td></td>
</tr>
<tr>
<td>5.92</td>
<td>21.3</td>
<td>45.8</td>
<td>65.6</td>
<td>57.7</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>14.8</td>
<td>79.0</td>
<td>39.9</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>7.19</td>
<td>905</td>
<td>3187</td>
<td>47.1</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td>2950</td>
<td>8010</td>
<td>43.3</td>
<td>2.41</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>2030</td>
<td>6522</td>
<td>33.7</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>937</td>
<td>2158</td>
<td>906.3</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>5.47</td>
<td>567</td>
<td>926</td>
<td>2101</td>
<td>2173</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>181</td>
<td>1633</td>
<td>1911</td>
<td>1606</td>
<td></td>
</tr>
<tr>
<td>30.6</td>
<td>97.6</td>
<td>735</td>
<td>880</td>
<td>1774</td>
<td></td>
</tr>
<tr>
<td>65.0</td>
<td>202</td>
<td>2130</td>
<td>1550</td>
<td>1880</td>
<td></td>
</tr>
<tr>
<td>54.6</td>
<td>301</td>
<td>1960</td>
<td>2430</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>55.7</td>
<td>303</td>
<td>1870</td>
<td>2200</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>1140</td>
<td>11500</td>
<td>3800</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>841</td>
<td>1680</td>
<td>14000</td>
<td>2410</td>
<td>1760</td>
<td></td>
</tr>
<tr>
<td>20.6</td>
<td>59.7</td>
<td>320</td>
<td>310</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>649</td>
<td>5180</td>
<td>842</td>
<td>1550</td>
<td></td>
</tr>
<tr>
<td>755</td>
<td>740</td>
<td>13300</td>
<td>3380</td>
<td>1060</td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>1310</td>
<td>16100</td>
<td>3310</td>
<td>1490</td>
<td></td>
</tr>
</tbody>
</table>
図1 有馬地域の泉源の分布
注）泉源の番号は表1と同じ、断層は笠間の文献6)を参考にした

図2 兵庫県南部の食塩泉の分布

表2 各温泉グループのNa/ClおよびK/Cl比

<table>
<thead>
<tr>
<th>温泉グループ</th>
<th>Na/Cl比 (mol/mol)</th>
<th>K/Cl比 (mol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>有馬高温強塩泉</td>
<td>0.122</td>
<td>0.009</td>
</tr>
<tr>
<td>有馬中低温弱塩泉</td>
<td>0.827</td>
<td>0.075</td>
</tr>
<tr>
<td>有馬中低温強塩泉</td>
<td>0.068</td>
<td>0.0485</td>
</tr>
<tr>
<td>宝塩</td>
<td>0.388</td>
<td>0.00180</td>
</tr>
<tr>
<td>川西・猪名川</td>
<td>1.328</td>
<td></td>
</tr>
<tr>
<td>東播</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図3 塩素イオンとナトリウムイオン濃度の相関

図4 塩素イオンとカリウムイオン濃度の相関
（シンボルは図3の脚注と同じ）
Na/Cl 比で同じ勾配の直線関係を示した有馬の高温強塩泉と中低温強塩泉の K/Cl 比が相違することは、それぞれの源泉の地下深部の温度差を反映したものと考えられ、温泉中のカリウム濃度は地下深部の鉱物-塩水反応によることを示唆している。また有馬の中低温弱塩泉のグループは、高温強塩泉と同様の K/Cl 比を示している。このことは、有馬の中低温弱塩泉は、主に高温強塩泉の地表水による単純な希釈による結果と考えられる。

3）炭酸水素イオンとカルシウムイオンとの相関

有馬、宝塚の中低温強塩泉が有馬の高温の強塩泉とは大きく異なる点は、炭酸水素イオン及び炭酸ガス濃度である。炭酸水素イオンとカルシウムイオン濃度の相関を図 5 に示す。寿禄 (No. 40) を除く宝塚、川西・恵名川、塩田の温泉地区は、両イオン濃度の間で原点をとる相関係数 0.45 の正の直線関係が 5 % の危険率で認められる。相関係数 0.45 は 1 モルのカルシウムイオンに対し約 2 モルの炭酸水素イオンが対応していることを示している。このことは、これらの温泉群の炭酸水素イオンが地下の岩石の影響を受けていること、具体的には地下深部での塩水-カルサイト平衡の影響を受けていることを示唆している。また有馬の中低温強塩泉でも、両イオンの間に正の相関係数が 5 % の危険率で認められる。このことからこの温泉群の炭酸水素イオンもまた塩水-カルサイト平衡の影響を受けていると考えられる。

4）塩水-カルサイト平衡

有馬の御所泉 (No. 1) で 133 ℃ の孔底温度が上流から 7) により、また天神泉 (No. 4) の孔底温度 122 ℃ の実測値が上流 8) により報告されている。これらを参考にして地下温度 100 ℃ での塩水-カルサイト平衡を仮定して、各泉源の飽和度 (Saturation Index) を計算した。結果を図 6 に示す。有馬の高温強塩泉では熱泉 (No. 3) を除いて他 6 泉源全てがカルサイト不飽和であった。古泉閣 (No. 14), 有和荘 (No. 11) 以外の有馬の中低温強塩泉と、宝塚 (Nos. 39, 40, 43, 44), 川西 (Nos. 37, 38) の泉源、東播、塩田地区の 3 泉源 (Nos. 32, 33, 34) がカルサイト過飽和であった。地下深部温度 50 ℃ では、有馬の強塩泉グループの熱泉関連泉源と、宝塚、川西、東播、塩田グループが過飽和であった。

図 5 炭酸水素イオンとカルシウムイオン濃度の相関
（シンボルは図 3 の脚注と同じ）
最近掘削された宝塚のミクロ泉（No. 44）は、水道温度の最高が、涌出地点付近の760 mの深度で41.2℃であった。このことから有馬以外の泉源での地下水深部の温度は50℃を越えないと考えられる。従って、有馬の中低温強塩泉をのぞいた泉源について50℃で、以下に示すカルサイト-塩水平衡反応を仮定して地下深部でのpHと炭酸ガス分圧を計算した。各種平衡式と平衡定数は表3に示す。この平衡式と総炭酸酸の式（5）からpH値とCO₂分圧を計算した。

\[\Sigma CO_3 = (H_2CO_3^+) + (HCO_3^-) + (CO_3^{2-}) \]

50℃でカルサイト過飽和を示した各泉源のpH値は、有馬亀関（No. 12）と加古川の見登呂（No. 32）をのぞいて、pK₁（6.3）以下であったので、pH値は平野らの以下の式で計算した。

\[\text{pH} = 1/2 \{ \log (K_a/K_1 K_2) - \log (Ca^{2+}) \gamma_{Ca^{2+}} - \log (\Sigma CO_3) \} \]

\[\log P_{CO_2} = \log K_c/K_p/K_1 K_2 - \log (Ca^{2+}) \gamma_{Ca^{2+}} - 2 \text{pH} \] ... (7)

カルシウムイオンおよびCO₂⁻イオンの活量係数は、イオン強度（IS）0.2以下の場合は、Debye-Hückelの式から求め、ISが0.2以上の濃厚溶液の場合はWhitefieldの表からISとそれぞれのイオンの活量係数をプロットし、各泉源のISから活量係数を読みとった。

地下深部50℃でのCa²⁺濃度とpH値、CO₂分圧の関係を図7に示す。加古川の見登呂と有馬の亀関泉源をのぞいて、カルサイト過飽和であった7箇所の泉源はCO₂分圧が約3.8気圧の直線に沿っていた。

図6 カルサイト飽和指数（SI）と塩素イオン濃度の相関（100℃）
（シンボルは図3の図記と同じ）

表3 カルサイト一水の平衡定数

<table>
<thead>
<tr>
<th>平衡系</th>
<th>25℃</th>
<th>50℃</th>
<th>60℃</th>
<th>100℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃→Ca²⁺⁺CO₃⁻⁻</td>
<td>K_c</td>
<td>8.37</td>
<td>8.62</td>
<td>8.74</td>
</tr>
<tr>
<td>CO₂⁻Η₂O→Η₂CO₃⁻⁻</td>
<td>K_d</td>
<td>1.46</td>
<td>1.705*1)</td>
<td>—</td>
</tr>
<tr>
<td>H₂CO₃⁻→Η⁺⁻ΗCO₃⁻⁻</td>
<td>K₁</td>
<td>6.35</td>
<td>6.31</td>
<td>6.32</td>
</tr>
<tr>
<td>HCO₃⁻⁻→Η⁺⁺CO₂⁻⁻</td>
<td>K₂</td>
<td>10.32</td>
<td>10.17</td>
<td>10.15</td>
</tr>
</tbody>
</table>

5) ポーリングコア中の鉱物

有馬の高温強塩泉と有馬、宝塚の中低温強塩泉のポーリングコア中の鉱物をX線回折で同定した結果を表4に示す。益田らの測定結果と同様に高温強塩泉グループのコア中にはカルサイトは検出されなかったが、有馬の中低温強塩泉グループのコア中にはカルサイトが検出された。このことは、有馬の中低温強塩泉がカルサイトに過飽和であった結果と一致する。ポーリングコアの中
表4 ボーリングコア中の礫物分析結果

<table>
<thead>
<tr>
<th>Depth</th>
<th>Qz</th>
<th>Crist.</th>
<th>Felds.</th>
<th>Sericite</th>
<th>Kaolinite</th>
<th>Laum.</th>
<th>Calcite</th>
<th>Siderite</th>
</tr>
</thead>
<tbody>
<tr>
<td>有明1号</td>
<td>220</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+ ?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2号</td>
<td>230</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>天神</td>
<td>210</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>獨楽</td>
<td>200</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>花の坊</td>
<td>400</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>銀水荘</td>
<td>400</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>溫病2号</td>
<td>500</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>600</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>860</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>大和</td>
<td>340</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>龍泉閣</td>
<td>700</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>宝塚ミクロ</td>
<td>630</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>678</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>730</td>
<td>+ + +</td>
<td>+ + +</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

的カルサイトは小さな亀裂の中に認められ、これは現在の温泉がボーリング孔底付近の古い温泉の沈殿物と平衡にあることを示唆している。また最近掘削された宝塚のミクロ泉は地下630m付近はチャートであり、さらにその下部はホルツフェルス状で両者とも古世層の堆積岩であった。740mの地下深部から上部のチャート岩へ向けて白色細脈になったカルサイトが析出していた。これは地下深部での古世層堆積岩中のカルサイトが温帯水の上昇過程で過飽和になり析出していることを示している。

考察

益田らは有馬の泉源の炭酸は、宝塚、猪名川等のHCO₃⁻に富む浅層地下水の混入によってもたらされたモデルを提唱し、有馬の高温強塩泉でカルサイト過飽和を示すのはこのHCO₃⁻に富む浅層地下水の混合の結果であるとしている。高温強塩泉の中で唯一カルサイト過飽和を示した極楽泉は1953年の掘削以降Cl濃度は3分の1以下に大幅に低下しており、表層水の混入が認められる。このことは、この泉源が、HCO₃⁻の豊富な浅層地下水の混合の結果過飽和になったと考えられ益田らの結論を支持している。

カルサイト過飽和を示す有馬の中低温強塩泉のCl濃度は高温強塩泉の極楽泉より高い。温泉病院1・2号泉（Nos. 8, 9）および銀水荘泉のCl濃度は、高温強塩泉の中で最も濃度を示す天水泉（No. 4）と同様かそれ以上であり、浅層地下水の混入はあったとしても僅かであろう。従って有馬の中低温強塩泉でのカルサイト過飽和が、HCO₃⁻に富む浅層地下水の混入の結果と考えにくい。

我々の結果からは、有馬の高温強塩泉とその近辺の中低温弱塩泉の炭酸はHCO₃⁻に富む浅層地下水の混入によるものと考えられる。

HCO₃⁻に富む地下水の炭酸は、宝塚、川西・猪名川等の地下深部でのカルサイトと塩水の平衡反応に由来するものと推定できる。またこのカルサイト塩水平衡に由来する浅層地下水には宝塚、川西だけでなく有馬の中低温強塩泉からのものも含まれると考えられる。
有馬の中低温強塩泉では、塩素イオン濃度と炭酸水素イオン濃度との間には正の相関も認められ、塩素イオンがマグマ性と仮定すれば、炭酸の起源も同様になる。有馬の中低温強塩泉の炭酸はカルサイト-塩水衡によるとマグマ性でも説明できることになる。どちらが主な寄与をしているのか、両者の混合と考えられるのは今後、温泉水中微量成分、ガス成分等の詳細な研究が必要とされるよう。

結論

1. 宝塚の低温強塩泉グループ及び川西、塩田の弱塩泉の炭酸水素イオン及び炭酸ガスは地下深部でのカルサイトと塩水衡反応によってその濃度が決定されており、この平衡反応での炭酸ガス分圧は調査した泉源では一定であり約3.8気圧であった。また塩水と平衡にあるカルサイトは、少なくとも宝塚、川西では古世世代堆積岩中のものである。
2. 有馬の高温強塩泉および弱塩泉の炭酸は上記のカルサイト-塩水衡由来のHCO₃⁻に富む浅層地下水の混入の結果であると考えられる。しかし有馬の中低温強塩泉の炭酸の由来はHCO₃⁻に富む浅層地下水の混入によるものとは考えられず、地下深部でのカルサイト-塩水衡由来と考えられ、宝塚、川西と同様、有馬の中低温強塩泉からのHCO₃⁻に富む地下水が上昇し浅層地下水となって流入し、それが有馬の高温強塩泉の炭酸の由来の1つになっていると考えられる。
3. 有馬の中低温強塩泉の炭酸の起源が、カルサイト-塩水衡かマグマ性のものかについては今後温泉水ガス成分等の分析で詳細な研究が必要とされる。

謝辞

ポーリングコアのX線回折を指導していただいた大阪大学教養部地学教室奥野泰章博士に感謝いたします。

文献

1) 池田長生：有馬温泉の化学的研究；日本化学雑誌 76 716(1955)
2) 鶴巻道二：有馬温泉の泉源について；神戸市有馬温泉に関する地質及び泉源調査；神戸市経済局 8-47(1964)
6) 笠間太郎：有馬温泉周辺の地質と構造；神戸市有馬温泉に関する地質及び泉源調査；神戸市経済局 4-7(1962)
7) Ueji T.: Study of the underground temperature gradients of several wells at Arima Spa district, near Kobe, Japan; J. Geomorph. 67 31 (1958)

8) 平野順次：有馬温泉の研究；日本書院 p65 (1958)
