原 著

An Application of Mn-impregnated Acrylic Fiber to the Determination of ²²⁶Ra and ²²⁸Ra in Hot Spring Waters

Tomoko Nakano-Ohta¹ and Jun Sato^{2*}

(Received Aug. 10, 2006, accepted Oct. 6, 2006)

¹ Department of Nuclear Science and Engineering, Research Reactor Institute, Kyoto University ² Department of Applied Chemistry, School of Science and Technology, Meiji University

マンガン化合物を含浸させたアクリル繊維を用いた 温泉水中の²²⁶Ra と²²⁸Ra の定量

¹京都大学原子炉実験所,²明治大学理工学部 中野(太田)朋子¹,佐藤 純²

要 約

マンガン化合物を含浸させたアクリル繊維を用いて東京地域に湧出する温泉水中の²²⁶Ra と ²²⁸Ra の濃度を測定した. 高塩濃度の水試料に対するこの方法の適用性は海水を用いて検討し た. 温泉水中の²²⁶Ra は 0.3-84 mBq・ l^{-1} の範囲にあり、²²⁸Ra は 0.2-104 mBq・ l^{-1} の範囲に あった. 温泉水中の Ra 濃度の平均値は、NaCl型の温泉水中の²²⁶Ra では 39 mBq・ l^{-1} で²²⁸Ra では 55 mBq・ l^{-1} であり、単純アルカリ泉型のものでは²²⁶Ra は 0.6 mBq・ l^{-1} で²²⁸Ra では 0.8 mBq・ l^{-1} であった. NaCl型の Ra 同位体の濃度は単純アルカリ泉型のものよりかなり高いこ とを示した.本邦のいくつかの温泉水中の²²⁶Ra の平均濃度は NaCl型では 104 mBq・ l^{-1} で単 純アルカリ泉型では 9 mBq・ l^{-1} であり、これらの温泉でも、NaCl型の²²⁶Ra 濃度は単純アル カリ泉型より高いことが示された. 温泉水中の Ra の濃度は Ca 濃度との間に良い相関が見ら れ、さらに温泉水の pH の大小が Ra の濃度を左右していると見られた.

Abstract

Concentrations of ²²⁶Ra and ²²⁸Ra in hot spring waters from Tokyo area were observed by Mn-impregnated acrylic fiber. Applicability of the method to highly saline waters was examined by use of seawater. The concentrations of ²²⁶Ra and ²²⁸Ra in hot

^{*}To whom all correspondences should be addressed.

spring waters ranged from 0.3 to 84 mBq $\cdot l^{-1}$ and from 0.2 to 104 mBq $\cdot l^{-1}$, respectively. The average concentrations of the hot spring waters were 39 mBq $\cdot l^{-1}$ for ²²⁶Ra and 55 mBq $\cdot l^{-1}$ for ²²⁸Ra in NaCl type, and 0.6 mBq $\cdot l^{-1}$ for ²²⁶Ra and 0.8 mBq $\cdot l^{-1}$ for ²²⁸Ra in simple alkaline type, indicating that the concentrations of Ra isotopes in NaCl type were much higher than those in simple alkaline type. Average concentration of ²²⁶Ra of some hot spring waters in Japan were 104 mBq $\cdot l^{-1}$ for NaCl type and 9 mBq $\cdot l^{-1}$ for simple alkaline type, indicating that the concentration of ²²⁶Ra in NaCl type was also much higher than those in simple alkaline type. Concentrations of Ra isotopes are well correlated with Ca concentrations, and may be controlled by pH of hot spring waters.

- Key words : Mn-impregnated acrylic fiber, radium-226, radium-228, hot spring water, Tokyo area
- キーワード : マンガン化合物を含浸させたアクリル繊維, ラジウム 226, ラジウム 228, 温泉水, 東京地域

1. Introduction

As ²²⁶Ra and ²²⁸Ra are progenies of ²³⁸U and ²³²Th, respectively, the concentrations of ²²⁶Ra and ²²⁸Ra are essentially dependent on the U and Th concentration in the source rocks. Thorium-230 and ²³²Th, parents of ²²⁶Ra and ²²⁸Ra, respectively, are supposed to be insoluble in hot spring waters with chemical character of neutral and/or alkaline type. The ²²⁶Ra and ²²⁸Ra in the hot spring waters are supplied from the relevant rock into water, including chemical leaching from the relevant rock and by the α -recoil ejection from Th isotopes on the surface of the rock. Assuming that the leaching efficiency between Ra isotopes from the relevant rock into the hot spring water is equal to each other, the variation in the activity ratio of Ra isotopes in the hot spring waters may be dependent on the age of hot spring water (Nakano-Ohta and Sato, 2005) or due to the mixing of waters of different origin in highly varying proportions. Thus the concentration of ²²⁶Ra and ²²⁸Ra is expected to be useful tracer on the hydrological aspects of natural waters.

Radium isotopes (²²⁶Ra and ²²⁸Ra) in hot spring waters have been determined by co-precipitation with BaSO₄ followed by α -ray spectrometry, γ -ray spectrometry or liquid scintillation spectrometry (Ikeda, 1955; Sugihara, 1970; Horiuchi and Murakami, 1978; Horiuchi et al., 1979 ; Kanroji et al., 1980 ; Kametani and Matsumura, 1983 ; Yamamoto et al., 1994 ; Chu and Wang, 2000). However, Ba reagents frequently contain small but significant amounts of 226 Ra of a fraction of 1 Bq/g. The amount of 226 Ra impurity in BaCl₂ · 2H₂O reagents from 3 major chemical reagent makers in Japan was observed to be in the range of 20-100 mBq \cdot g⁻¹ (Saito et al., 2002), which may contaminate with several mBq of ²²⁶Ra in the co-precipitation process of sample waters. Though the separation procedure including co-precipitation of ²²⁶Ra with Ba reagents may be applied to the hot spring water having high concentration of 226 Ra of 1,000 mBq $\cdot l^{-1}$ or more, it is not preferable for hot spring waters having low concentration of ²²⁶Ra to separate it with BaSO₄, especially for a minute amount of ²²⁶Ra of less than 10 mBq $\cdot l^{-1}$. Yamamoto *et al.* (1989) also pointed out that the amount of ²²⁶Ra impurity in Ba reagents ranged from 100 to 400 mBq \cdot g⁻¹ and proposed the procedure to eliminate ²²⁶Ra impurity from Ba compounds by cation exchange separation using CyDTA (cyclohexanediaminetetraacetic acid) as eluant. Co-precipitation procedures with BaSO₄ were reported for ²²⁶Ra in natural waters, including seawater, of $1 \text{ mBq} \cdot l^{-1}$, using Ra-free Ba reagent (Yamamoto *et al.*, 1994) or Ba reagent with the known amount of Ra contents. Recently, Saito *et al.* (2002) developed an ion exchange procedure for Ra isotopes in hot spring waters, which was free from the contamination of Ra isotopes from reagent.

Moore (1976) reported that Mn-impregnated acrylic fiber could collect ²²⁸Ra from a large amount of seawater : 100 g of the Mn-impregnated acrylic fiber could collect up to 500 dpm of ²²⁸Ra in seawater, which was equivalent to 1,500 *l* or more of seawater. Collection of Ra isotopes by Mn-impregnated acrylic fiber has been applied to various natural waters (Moore, 1976 ; Ku *et al.*, 1980 ; Yamada and Nozaki, 1986 ; Nozaki and Tsunogai, 1990 ; Kasemsupaya *et al.*, 1993).

Concentrations of Ra isotopes in hot spring waters were reported to be $1\sim 632 \text{ mBq} \cdot l^{-1}$ for ²²⁶Ra and $0.2\sim 1,000 \text{ mBq} \cdot l^{-1}$ for ²²⁸Ra (Sato *et al.*, 1975; Horiuchi *et al.*, 1979; Kanroji *et al.*, 1979; Yamamoto *et al.*, 1994; Saito, 2005; Nakano-Ohta and Sato, 2006). Though the highly concentrated Ra isotopes in hot spring waters can be determined with several tens liters of sample water, Ra of low concentration requires sample volume larger than 100 *l*. This paper deals with effective collection and determination for the concentration of ²²⁶Ra and ²²⁸Ra in seawaters and various hot spring waters including highly saline hot spring waters with a large volume of 100 l in Tokyo area. The present study consists of two procedures : (1) collection of ²²⁶Ra and ²²⁸Ra in seawater and hot spring water of 100 l by a column of Mn-impregnated acrylic fiber and (2) determination of ²²⁶Ra and ²²⁸Ra by γ -ray spectrometry.

2. Experiments

2.1 Sampling sites and samples

Surface seawater from Tokyo Bay was sampled at Umizuri Park, Kawasaki. Figure 1 shows sampling sites of hot spring waters and the geology in Tokyo area (Omori, 1989). Hot springs located in Tokyo area are grouped into three localities : (1) metropolitan area, (2) Tama area and (3) Okutama area (Kanroji *et al.*, 2000). Chemical characteristics of the hot spring waters belong to (1) NaCl and NaHCO₃ type for metropolitan area, (2) NaCl and NaHCO₃ type for Tama area, and (3) simple alkaline type for Okutama area. Evaporated residues of hot spring waters ranged from 98 to 580 mg $\cdot l^{-1}$ for Okutama area, from 150 to 2,053 mg $\cdot l^{-1}$ for Tama area and from 2,000 to 32,050 mg $\cdot l^{-1}$ for metropolitan area (Kanroji *et al.*, 2000; Kanroji, 2005, *priv. com.*), indicating that the evaporated residues in the hot spring waters from the metropolitan area were much higher than those from Okutama area and Tama area.

Hot spring waters and surface seawaters were stored in 20l polyethylene bottles for transportation.

2.2 Analytical method

The Mn-impregnated acrylic fiber was prepared after the procedure given by Moore (1976). Briefly, 100 g of acrylic fiber (Hamanaka Co. Ltd.) was put into 1l of $0.3 \text{ mol} \cdot l^{-1}$ solution of KMnO₄ for 3 h at 70°C to form Mn-impregnated acrylic fiber, and the product was rinsed well with deionized water and dried completely in an electric drier oven at 50°C. The

Fig. 1 Sampling sites of hot spring waters in Tokyo area (modified from Omori (1989).

chemical form of the Mn compound deposited on the acrylic fiber and chemical properties of the Mn-impregnated acrylic fiber are described in detail elsewhere (Ohta *et al.*, 2004).

The polycarbonate column consists of three sub columns (3.5 cm inner diameter, 30 cm long) of 31 g of Mn-impregnated acrylic fiber connected in series with each other by putting plastic net between the columns. Sample waters were passed through the column with a flow rate of less than $2l \cdot \min^{-1}$. This collection procedure for ²²⁶Ra in 100*l* water sample required 2.5 hours.

This analytical method was applied to seawater, highly saline hot spring water of NaCl type, NaHCO₃ type and simple alkaline type. Hot spring waters of $66 \sim 100 l$ were passed through the column. Two Mn-impregnated acrylic fibers in the first and the second columns were combined to be packed into one air-tight tin canister (76 mm ϕ , 24 mm H). The Mn-impregnated acrylic fibers which collected Ra isotopes were stored for 1 month for γ -ray spectrometry in order that ²¹⁴Pb and ²²⁸Ac reached the radioactive equilibrium with ²²⁶Ra and ²²⁸Ra, respectively. Radioactivity of ²¹⁴Pb and ²²⁸Ac were determined by the 351 keV and the 911 keV γ -rays, respectively. Detailed discussion on the present spectrometry is described by Saito *et al.* (2002).

- 4	-1
- 71	
	1

Chemical character	Sampling date	226 Ra/ mBq $\cdot l^{-1*}$	228 Ra/ mBq $\cdot l^{-1*}$	²²⁸ Ra/ ²²⁶ Ra	Depth**/ m
NaCl type					
Oyedo-onsen-monogatari ^{a)}	Dec 9, 2005	84 ± 2	104 ± 4	1.2 ± 0.1	1300
Heiwajima-kurhaus ^{a)}	Dec 26, 2004	58 ± 2	94 ± 4	1.9 ± 0.1	2000
Kannon-no-yu ^{b)}	April 3, 2005	43 ± 1	73 ± 1	1.7 ± 0.1	1500
Seta-sanga-no-yu ^{a)}	Dec 6, 2005	21 ± 0.5	23 ± 1	1.1 ± 0.1	1700
Jindaiji-yukari ^{a)}	July 4, 2005	10 ± 0.2	12 ± 1	1.2 ± 0.1	1500
$Tennyo\text{-}no\text{-}yu^{d)}$	Aug 8, 2003	18 ± 1	21 ± 1	1.3 ± 0.1	1600
Average		39	55	1.4	
NaHCO₃ type					
Kamata ^{a)}	Dec 26, 2004	1.2 ± 0.2	3.0 ± 0.4	2.5 ± 0.5	100
Hisamatsu ^{a)}	July 2, 2005	0.49 ± 0.09	$0.73 {\pm} 0.20$	1.5 ± 0.5	60
Average		0.85	1.9	2.0	
Simple alkaline type					
Nomekoi-no-yu ^{c)}	May 14, 2003	0.30 ± 0.08	0.24 ± 0.04	0.8±0.3	1300-1500
Tsuru-no-yu ^{c)}	May 20, 2003	0.94 ± 0.26	$0.63 {\pm} 0.04$	0.7 ± 0.2	300
Matsu-no-yu ^{c)}	May 14, 2003	$0.66 {\pm} 0.08$	1.1 ± 0.11	1.7 ± 0.3	30
Kosuge-no-yu ^{c)}	July 12, 2005	$0.43 {\pm} 0.10$	$0.62 {\pm} 0.15$	1.4 ± 0.5	1500
Yasuragi-no-sato ^{c)}	May 10, 2005	$0.62 {\pm} 0.06$	1.2 ± 0.2	1.9 ± 0.2	1300-1500
Average		0.6	0.8	1.3	

Table 1 Concentrations of ²²⁶Ra and ²²⁸Ra, and ²²⁸Ra/²²⁶Ra activity ratio in hot spring waters from Tokyo area

 $^{\ast}\,{\rm Errors}$ represent the counting statistics.

** The depth of bore-hole of hot-spring.

^{a)} Metropolitan area

^{b)} Tama area

^{c)} Okutama area

^{d)} Yamanashi Pref.

3. Results and discussion

3.1 Surface seawater

Prior to the determination of the Ra isotopes in hot spring water, 226 Ra in seawater was determined by the Mn-impregnated acrylic fiber. Surface seawater (100*l*) from Tokyo Bay sampled at Umizuri Park, Kawasaki, was passed through the column. The Mn-impregnated acrylic fiber recovered from each column was dried to be packed into three canisters separately.

The total amount of ²²⁶Ra in the initial water sample can be estimated by the calculation given as follows :

$$C_1 = C_0 \cdot \alpha$$

$$C_2 = (C_0 - C_1) \cdot \alpha$$

$$\therefore \alpha = 1 - (C_2/C_1)$$

$$\therefore C_0 = C_1/[1 - (C_2/C_1)]$$

Chemical character	$^{226}\mathrm{Ra}/\mathrm{mBq}$ \cdot l^{-1}	228 Ra/mBq · l^{-1}	²²⁸ Ra/ ²²⁶ Ra
NaCl type			
Kagahachiman*)	2.08 ± 0.27	3.09 ± 0.66	1.5 ± 0.3
Nakanomiya*)	45.2 ± 0.8	37.5 ± 1.1	$0.83 {\pm} 0.02$
Iwama*)	5.48 ± 0.52	12.3 ± 1.8	2.2 ± 0.3
Keinakyo*)	4.77 ± 0.33	6.11 ± 0.71	1.3 ± 0.1
Tatsuno-kuchi*)	112 ± 4	174 ± 11	1.6 ± 0.1
Misasa 1**)	48 ± 1	112 ± 5	2.3 ± 0.1
Misasa 2**)	52 ± 9	101 ± 16	1.9 ± 0.4
Onogawa 1**)	351 ± 36	525 ± 64	1.5 ± 0.2
Onogawa 2**)	344 ± 25	565 ± 42	1.6 ± 0.2
Arima 1**)	203 ± 14	64 ± 26	$0.33 {\pm} 0.14$
Arima 2**)	69 ± 10	49 ± 14	0.71 ± 0.22
Hijiori**)	14 ± 2	32 ± 3	2.2 ± 0.4
Average	104	140	1.5
Simple alkaline type			
Nakano-yu*)	4.50 ± 0.44	9.72 ± 1.61	2.2 ± 0.3
Akahodani*)	11.3 ± 0.8	3.74 ± 0.34	3.7 ± 0.3
Gero*)	2.13 ± 0.41	4.70 ± 1.58	2.2 ± 0.6
Nozawa*)	0.95 ± 0.24	2.76 ± 0.77	2.9 ± 0.3
Miyanohara ^{*)}	25 ± 1	28±3	1.1 ± 0.1
Average	9	10	2.4

Table 2 Concentrations of ²²⁶Ra and ²²⁸Ra, and ²²⁸Ra/²²⁶Ra activity ratio in hot spring waters in Japan (Yamamoto *et al.*, 1994 ; Saito *et al.*, 2002)

*) Yamamoto *et al.* (1994).

**) Saito *et al.* (2004).

where C_0 is the total amount of ²²⁶Ra in the initial seawater sample, C_1 is the amount collected from the initial water sample by Mn-impregnated acrylic fiber in the first column, C_2 is the amount collected by the second column from the sample water after passing through the first column, and α is the collecting coefficient of ²²⁶Ra for each 31 g of Mn-impregnated acrylic fiber. The third column is the back-up column for the break-through of ²²⁶Ra from the second column. The amount of ²²⁶Ra collected by the third column may be $C_3 = C_0 \cdot (1-\alpha)^2 \cdot \alpha$.

The amounts of ²²⁶Ra collected on the Mn-impregnated acrylic fibers were 93 mBq for the first column and 24 mBq for the second column. The amount of ²²⁶Ra in the third column was less than the detection limit. The α is calculated by the amounts of ²²⁶Ra collected on the Mn-impregnated acrylic fibers of the first and the second column to be 0.73, and the amount of ²²⁶Ra in the initial seawater sample is estimated to be $C_0 = 127$ mBq. The amount of ²²⁶Ra is calculated to be 6.5 mBq for C_3 and 2.7 mBq in the drain water, suggesting that the amount of ²²⁶Ra passed through the three columns of the Mn-impregnated acrylic fibers is 2% of the total amount of ²²⁶Ra in 100*l* of the seawater sample. The ²²⁶Ra concentration in this seawater sample was 1.3 mBq $\cdot l^{-1}$. Seawater (127 *l*) from Tokyo Bay also sampled at Umizuri Park was passed through the set of the three columns. Two Mn-impregnated acrylic fibers in the first

Fig. 2 Correlation between concentrations of ²²⁶ Ra and ²²⁸ Ra, and Ca in hot spring waters from Tokyo area.
● : NaCl type, ■ : NaHCO₃ type, ○ : simple alkaline type.

and the second column were combined and packed into a canister for ²²⁶Ra analysis with the view of reducing counting duration in case of a large number of samples. The concentration of ²²⁶Ra in this seawater sample was $1.1 \text{ mBq} \cdot l^{-1}$. Concentration of ²²⁶Ra in seawater could be estimated by the amounts of ²²⁶Ra collected on the combined Mn-impregnated acrylic fiber of the first and second columns, and the volume of sample water. This procedure will result in an underestimation of a few percent of ²²⁶Ra content, though it is in the order of magnitude of the counting error for γ -ray spectrometry. The presently observed concentrations of ²²⁶Ra in surface seawaters from Tokyo Bay are similar to those in previous results (Yamada and Nozaki, 1986).

Fig. 3 Correlation between concentrations of ²²⁶ Ra and pH of hot spring water from Tokyo area.
● : NaCl type, ■ : NaHCO₃ type, ○ : simple alkaline type.

3.2 Hot spring water

Table 1 lists concentrations of ²²⁶Ra and ²²⁸Ra in hot spring waters classified by chemical characteristics along with the depth of bore-hole of respective hot spring. The concentrations of ²²⁶Ra and ²²⁸Ra in the hot spring waters ranged from 0.3 to 84 mBq $\cdot l^{-1}$ and from 0.2 to 104 mBq $\cdot l^{-1}$, respectively. The average concentrations were 39 mBq $\cdot l^{-1}$ for ²²⁶Ra and 55 mBq $\cdot l^{-1}$ for ²²⁸Ra in NaCl type, and 0.6 mBq $\cdot l^{-1}$ for ²²⁶Ra and 0.8 mBq $\cdot l^{-1}$ for ²²⁸Ra in simple alkaline type, indicating that the concentrations of Ra isotopes in NaCl type were 70 times higher than those in simple alkaline type.

Table 2 lists the reported concentrations of ²²⁶Ra and ²²⁸Ra in hot spring waters from Japan classified by NaCl type and simple alkaline type. The ²²⁶Ra concentration in hot spring water in Tables 1 and 2 ranged from 2 to $351 \text{ mBq} \cdot l^{-1}$ for NaCl type and from 0.3 to $25 \text{ mBq} \cdot l^{-1}$ for simple alkaline type, and the averaged concentration was $74 \text{ mBq} \cdot l^{-1}$ for NaCl type and $4.8 \text{ mBq} \cdot l^{-1}$ for simple alkaline type, also indicating that the concentrations of ²²⁶Ra in NaCl type were much higher than those in simple alkaline type and that the concentrations of Ra isotopes may be dependent on the chemical characteristics of hot spring water.

Smaller activity ratios of ²²⁸Ra/²²⁶Ra in hot spring waters from Nomekoi-no-yu, Tsuru-no-yu, Nakanomiya, Arima 1 and Arima 2 suggest that these hot spring waters are older than the others (Nakano-Ohta and Sato, 2005).

Figure 2 shows the correlation between the observed concentrations of ²²⁶Ra and ²²⁸Ra and the concentration of Ca for hot spring waters from Tokyo area (Kanroji, 2005, *priv. com.*). The correlation coefficient (r²) between concentration of ²²⁶Ra and concentration of Ca is 0.86. The good correlation between concentrations of Ra isotopes and Ca suggests that Ra isotopes may have been leached chemically from the rocks in the aquifer. Figure 3 shows the variation

in the concentration of ²²⁶Ra with pH values. The average pH values are 7.7 for NaCl type and 9.9 for simple alkaline type, indicating that the hot spring water with lower pH contains higher concentration of Ra isotopes, suggesting that the leaching process mentioned above may be controlled by pH of hot spring waters.

Acknowledgments

The authors are deeply indebted to Dr. Y. Kanroji, Hot Spring Research Center, for his guidance in the selection of hot springs for the present study. Cooperation of Miss C. Shina-gawa, Meiji University, in sampling of hot spring water is gratefully acknowledged.

References

- Chu, T.C. and Wang, J.J. (2000) : Radioactive disequilibrium of uranium and thorium nuclide series in hot spring and river water from Peitou hot spring basin in Taipei. J. Nucl. Radiochem. Sci., 1, 5–10.
- Horiuchi, K. and Murakami, Y. (1978): Study on the simultaneous determination of radium and radon in the same water sample of mineral springs. Part 1—Simultaneously determined contents of Ra and Rn in water samples of Misasa, Katsuura, Shirahama, Yugashima, Aziro and Masutomi—. J. Balneol. Soc. Jpn., 29, 68–75 (in Japanese with English abstract).
- Horiuchi, K., Ishii, T. and Murakami, Y. (1979) : Results on the simultaneous determination of ²²²Rn, ²²⁰Rn and ²²⁶Ra contents in mineral springs of Izu Peninsula. J. Balneol. Soc. Jpn., 30, 84–89 (in Japanese with English abstract).
- Horiuchi, K., Kanroji, Y. and Murakami, Y. (1979) : Geochemical study on the occurrence and sources of Ra and Rn in Shirahama Spa. *J. Balneol. Soc. Jpn.*, **29**, 175–182 (in Japanese with English abstract).
- Ikeda, N. (1955): Chemical studies on the hot spring of Arima III. Investigations on the Tenmangu-no-yu Spring, Arima Area. (5). J. Chem. Soc. Jpn., 76, 1079–1082 (in Japanese).
- Kametani, K. and Matsumura, T. (1983) : Determination of ²³⁸U, ²³⁴U, ²²⁶Ra and ²²⁸Ra in spring waters of Sanin district. *Radioisotopes*, **32**, 18–21 (in Japanese with English abstract).
- Kanroji, Y., Horiuchi, K., Ishii, T. and Murakami, Y. (1980) : Ra and Rn concentrations in thermal spring waters from Izu Peninsula. *J. Balneol. Soc. Jpn.*, **31**, 23–34 (in Japanese with English abstract).
- Kanroji, Y., Horiuchi, K. and Murakami, Y. (1979) : Geochemical study on the occurrence and sources of Ra and Rn in Katsuura-Yukawa Spa. J. Balneol. Soc. Jpn., 29, 175–182 (in Japanese with English abstract).
- Kanroji, Y., Tanaka, S. and Ichiyanagi, H. (2000) : Regional distribution and water qualities of hot-springs distributed from Tama to Okutama area in Tokyo Metropolis. J. Balneol. Soc. Jpn., 27, 32–46 (in Japanese with English abstract).
- Kasemsupaya, V., Tsubota, H. and Nozaki, Y. (1993): ²²⁸Ra and its implications in the Seto Inland Sea. *Esturarine, Coastal and Shelf Science*, **36**, 31-45.
- Ku, T.L., Huh, C.A. and Chin, P.S. (1980): Meridional distribution of ²²⁶Ra in the eastern of

Pacific along geosecs curise tracks. Earth Planetary Sci. Lett., 49, 293-308.

- Moore, W.S. (1976) : Sampling ²²⁸Ra in the deep ocean. Deep-Sea Res., 23, 647-651.
- Nakano-Ohta, T. and Sato, J. (2005) : ²²⁸Ra/²²⁶Ra activity ratio in river water in Okutama area, western district of Tokyo. *Radioisotopes*, **54**, 531–540.
- Nakano-Ohta, T. and Sato, J. (2006): Determination of ²²⁶Ra and ²²⁸Ra in seawater by Mnimpregnated acrylic fiber. *Radioisotopes*, **55**, 443-449.
- Nozaki, Y. and Tsunogai, S. (1990) : The distribution of ²²⁸Ra and ²²⁶Ra in the surface waters of the northern North Pacific. *Geochem. J.*, **24**, 1–6.
- Ohta, T., Saito, T. and Sato, J. (2004) : Collection of Radium isotopes in natural waters by manganese-impregnated acrylic fiber, *Radioisotopes*, **53**, 1–11.
- Omori, M., ed. (1989) : Nichiyo-no-chigaku, Tsukiji Shokan, Tokyo (in Japanese).
- Saito, T. (2005): Estimation of growth rate of Hokutolite from Tamagawa Hot-spring. Proc. Inst. Natural Sci., Nihon Univ., 40, 203–207 (in Japanese with English abstract).
- Saito, T., Ueda, H., Ohta, T. and Sato, J. (2002) : Determination of radium isotopes concentrations in hot-spring waters with cation exchange resin. J. Balneol. Soc. Jpn., 52, 3-11.
- Sato, J., Yokozawa, O. and Saito, N. (1975) : Radioactive nuclides in the thermal spring water and its sinter deposits from Sarugajo, Tarumizu city, Kagoshima prefecture. J. Soc. Eng. Mineral Springs, Jpn., 10, 47-60 (in Japanese with English abstract).
- Sugihara, T. (1970) : On the ²²⁶Ra and ²²⁴Ra (ThX) contents of hot spring waters. Memoirs of the Faculty of Liberal Arts & Education. Part II, Mathematics & Natural Sciences, Yamanashi Univ., 21, 182-189 (in Japanese).
- Yamada, M. and Nozaki, Y. (1986) : Radium isotopes in coastal and open ocean surface water of the western North Pacific. *Marine Chem.*, 19, 379–389.
- Yamamoto, M., Toguchi, A., Sashimono, K., Komura, K., Ueno, K. and Sakanoue, M. (1994): ²¹⁰Pb and ²¹⁰Po in volcanic products and mineral springs (2)—Measurement of ²¹⁰Pb and ²¹⁰Po contents in mineral springs—. J. Balneol. Soc. Jpn., 44, 18–27 (in Japanese with English abstract).
- Yamamoto, M., Komura, K. and Ueno, K. (1989) : Determination of low-level ²²⁶Ra in environmental water samples by alpha-ray spectrometry. *Radiochim. Acta*, **46**, 137-142.